
- Previous Article
- CPAA Home
- This Issue
-
Next Article
Dynamics of an SIRS epidemic model with cross-diffusion
Subharmonic solutions of bounded coupled Hamiltonian systems with sublinear growth
1. | School of Mathematical Sciences, Soochow University, Suzhou 215006, China |
2. | Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China |
We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.
References:
[1] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular-Laplacian, J. Differ. Equ., 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[2] |
A. Boscaggin and R. Ortega,
Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Cambridge Philos. Soc., 157 (2014), 279-296.
doi: 10.1017/S0305004114000310. |
[3] |
A. Calamai and A. Sfecci,
Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equ. Appl., 24 (2017), 1-17.
doi: 10.1007/s00030-016-0427-5. |
[4] |
T. Ding and F. Zanolin,
Periodic solutions of Duffing's equations with superquadratic potential, J. Differ. Equ., 97 (1992), 328-378.
doi: 10.1016/0022-0396(92)90076-Y. |
[5] |
T. Ding and F. Zanolin,
Subharmonic solutions of second order nonlinear equations: A time-map approach, Nonlinear Anal., 20 (1993), 509-532.
doi: 10.1016/0362-546X(93)90036-R. |
[6] |
A. Fonda,
Positively homogeneous Hamiltonian systems in the plane, J. Differ. Equ., 200 (2004), 162-184.
doi: 10.1016/j.jde.2004.02.001. |
[7] |
A. Fonda, M. Garrione and P. Gidoni,
Periodic perturbations of Hamiltonian systems, Adv. Nonlinear Anal., 5 (2016), 367-382.
|
[8] |
A. Fonda and P. Gidoni,
An avoiding cones condition for the Poincaré-Birkhoff theorem, J. Differ. Equ., 262 (2017), 1064-1084.
doi: 10.1016/j.jde.2016.10.002. |
[9] |
A. Fonda and M. Ramos,
Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities, J. Differ. Equ., 109 (1994), 354-372.
doi: 10.1006/jdeq.1994.1055. |
[10] |
A. Fonda, Z. Schneider and F. Zanolin,
Periodic oscillations for a nonlinear suspension bridge model, J. Comput. Appl. Math., 52 (1994), 113-140.
|
[11] |
A. Fonda and A. Sfecci,
Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete Contin. Dyn. Syst., 37 (2017), 297-301.
doi: 10.3934/dcds.2017059. |
[12] |
A. Fonda and A. Sfecci,
Periodic solutions of a system of coupled oscillators with one-sided superlinear retraction forces, Differ. Integral Equ., 25 (2012), 993-1010.
|
[13] |
A. Fonda and A. Sfecci,
Periodic solutions of weakly coupled superlinear systems, J. Differ. Equ., 260 (2016), 2150-2162.
doi: 10.1016/j.jde.2015.09.056. |
[14] |
A. Fonda and R. Toader,
Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc, 140 (2012), 1331-1341.
|
[15] |
A. Fonda and R. Toader,
Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602.
doi: 10.1515/anona-2017-0040. |
[16] |
A. Fonda and A. J. Ureña,
A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679-698.
doi: 10.1016/j.anihpc.2016.04.002. |
[17] |
M. Garcia-Huidobro, R. Manásevich and F. Zanolin,
Strongly nonlinear second-order ODEs with unilateral conditions, Differ. Integral Equ., 8 (1993), 1057-1078.
|
[18] |
P. Hartman,
On boundary value problems for second order differential equations, J. Differ. Equ., 26 (1977), 37-53.
doi: 10.1016/0022-0396(77)90097-3. |
[19] |
H. Jacobowitz,
Periodic solutions of $x''+f(x, t) = 0$ via the Poincaré-Birkhoff theorem, J. Differ. Equ., 20 (1976), 37-52.
doi: 10.1016/0022-0396(76)90094-2. |
[20] |
J. Mawhin, Resonance problems for some non-autonomous ordinary differential equations, in Stability and Bifurcation Theory for Non-Autonomous Differential Equations, Lecture Notes in Mathematics, 2065, Springer Verlag, 2013.
doi: 10.1007/978-3-642-32906-7_3. |
[21] |
J. Moser and E. Zehnder, Notes on Dynamical Systems, Courant Institute of Mathematical Sciences, New York University, 2005.
doi: 10.1090/cln/012. |
[22] |
D. Qian, L. Chen and X. Sun,
Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differ. Equ., 258 (2015), 3088-3106.
doi: 10.1016/j.jde.2015.01.003. |
[23] |
D. Qian and P. J. Torres,
Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.
doi: 10.1137/S003614100343771X. |
[24] |
D. Qian, P. J. Torres and P. Wang,
Periodic solutions of second order equations via rotation numbers, J. Differ. Equ., 266 (2019), 4746-4768.
doi: 10.1016/j.jde.2018.10.010. |
[25] |
C. Rebelo and F. Zanolin,
Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349-2389.
doi: 10.1090/S0002-9947-96-01580-2. |
[26] |
X. Sun, Q. Liu, D. Qian and N. Zhao,
Infinitely many subharmonic solutions for nonlinear equations with singular $\phi$-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 279-292.
doi: 10.3934/cpaa.20200015. |
show all references
References:
[1] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular-Laplacian, J. Differ. Equ., 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[2] |
A. Boscaggin and R. Ortega,
Monotone twist maps and periodic solutions of systems of Duffing type, Math. Proc. Cambridge Philos. Soc., 157 (2014), 279-296.
doi: 10.1017/S0305004114000310. |
[3] |
A. Calamai and A. Sfecci,
Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, Nonlinear Differ. Equ. Appl., 24 (2017), 1-17.
doi: 10.1007/s00030-016-0427-5. |
[4] |
T. Ding and F. Zanolin,
Periodic solutions of Duffing's equations with superquadratic potential, J. Differ. Equ., 97 (1992), 328-378.
doi: 10.1016/0022-0396(92)90076-Y. |
[5] |
T. Ding and F. Zanolin,
Subharmonic solutions of second order nonlinear equations: A time-map approach, Nonlinear Anal., 20 (1993), 509-532.
doi: 10.1016/0362-546X(93)90036-R. |
[6] |
A. Fonda,
Positively homogeneous Hamiltonian systems in the plane, J. Differ. Equ., 200 (2004), 162-184.
doi: 10.1016/j.jde.2004.02.001. |
[7] |
A. Fonda, M. Garrione and P. Gidoni,
Periodic perturbations of Hamiltonian systems, Adv. Nonlinear Anal., 5 (2016), 367-382.
|
[8] |
A. Fonda and P. Gidoni,
An avoiding cones condition for the Poincaré-Birkhoff theorem, J. Differ. Equ., 262 (2017), 1064-1084.
doi: 10.1016/j.jde.2016.10.002. |
[9] |
A. Fonda and M. Ramos,
Large-amplitude subharmonic oscillations for scalar second-order differential equations with asymmetric nonlinearities, J. Differ. Equ., 109 (1994), 354-372.
doi: 10.1006/jdeq.1994.1055. |
[10] |
A. Fonda, Z. Schneider and F. Zanolin,
Periodic oscillations for a nonlinear suspension bridge model, J. Comput. Appl. Math., 52 (1994), 113-140.
|
[11] |
A. Fonda and A. Sfecci,
Multiple periodic solutions of Hamiltonian systems confined in a box, Discrete Contin. Dyn. Syst., 37 (2017), 297-301.
doi: 10.3934/dcds.2017059. |
[12] |
A. Fonda and A. Sfecci,
Periodic solutions of a system of coupled oscillators with one-sided superlinear retraction forces, Differ. Integral Equ., 25 (2012), 993-1010.
|
[13] |
A. Fonda and A. Sfecci,
Periodic solutions of weakly coupled superlinear systems, J. Differ. Equ., 260 (2016), 2150-2162.
doi: 10.1016/j.jde.2015.09.056. |
[14] |
A. Fonda and R. Toader,
Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc, 140 (2012), 1331-1341.
|
[15] |
A. Fonda and R. Toader,
Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602.
doi: 10.1515/anona-2017-0040. |
[16] |
A. Fonda and A. J. Ureña,
A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679-698.
doi: 10.1016/j.anihpc.2016.04.002. |
[17] |
M. Garcia-Huidobro, R. Manásevich and F. Zanolin,
Strongly nonlinear second-order ODEs with unilateral conditions, Differ. Integral Equ., 8 (1993), 1057-1078.
|
[18] |
P. Hartman,
On boundary value problems for second order differential equations, J. Differ. Equ., 26 (1977), 37-53.
doi: 10.1016/0022-0396(77)90097-3. |
[19] |
H. Jacobowitz,
Periodic solutions of $x''+f(x, t) = 0$ via the Poincaré-Birkhoff theorem, J. Differ. Equ., 20 (1976), 37-52.
doi: 10.1016/0022-0396(76)90094-2. |
[20] |
J. Mawhin, Resonance problems for some non-autonomous ordinary differential equations, in Stability and Bifurcation Theory for Non-Autonomous Differential Equations, Lecture Notes in Mathematics, 2065, Springer Verlag, 2013.
doi: 10.1007/978-3-642-32906-7_3. |
[21] |
J. Moser and E. Zehnder, Notes on Dynamical Systems, Courant Institute of Mathematical Sciences, New York University, 2005.
doi: 10.1090/cln/012. |
[22] |
D. Qian, L. Chen and X. Sun,
Periodic solutions of superlinear impulsive differential equations: a geometric approach, J. Differ. Equ., 258 (2015), 3088-3106.
doi: 10.1016/j.jde.2015.01.003. |
[23] |
D. Qian and P. J. Torres,
Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725.
doi: 10.1137/S003614100343771X. |
[24] |
D. Qian, P. J. Torres and P. Wang,
Periodic solutions of second order equations via rotation numbers, J. Differ. Equ., 266 (2019), 4746-4768.
doi: 10.1016/j.jde.2018.10.010. |
[25] |
C. Rebelo and F. Zanolin,
Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities, Trans. Amer. Math. Soc., 348 (1996), 2349-2389.
doi: 10.1090/S0002-9947-96-01580-2. |
[26] |
X. Sun, Q. Liu, D. Qian and N. Zhao,
Infinitely many subharmonic solutions for nonlinear equations with singular $\phi$-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 279-292.
doi: 10.3934/cpaa.20200015. |

[1] |
Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675 |
[2] |
Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064 |
[3] |
Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467 |
[4] |
Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic and Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857 |
[5] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[6] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[7] |
Li-Xin Zhang. On the laws of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 409-460. doi: 10.3934/puqr.2021020 |
[8] |
William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028 |
[9] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[10] |
Xiao-Fei Zhang, Fei Guo. Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1625-1642. doi: 10.3934/cpaa.2016005 |
[11] |
Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1495-1533. doi: 10.3934/dcds.2021162 |
[12] |
Robert J. Elliott, Tak Kuen Siu. Stochastic volatility with regime switching and uncertain noise: Filtering with sub-linear expectations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 59-81. doi: 10.3934/dcdsb.2017003 |
[13] |
Pedro Marín-Rubio, José Real. Pullback attractors for 2D-Navier-Stokes equations with delays in continuous and sub-linear operators. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 989-1006. doi: 10.3934/dcds.2010.26.989 |
[14] |
Li-Xin Zhang. A note on the cluster set of the law of the iterated logarithm under sub-linear expectations. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022006 |
[15] |
Julián López-Gómez, Eduardo Muñoz-Hernández, Fabio Zanolin. On the applicability of the poincaré–Birkhoff twist theorem to a class of planar periodic predator-prey models. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2393-2419. doi: 10.3934/dcds.2020119 |
[16] |
Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15 |
[17] |
Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121 |
[18] |
Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354 |
[19] |
Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361 |
[20] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]