-
Previous Article
On a system of nonlinear pseudoparabolic equations with Robin-Dirichlet boundary conditions
- CPAA Home
- This Issue
-
Next Article
Wave breaking phenomena and global existence for the weakly dissipative generalized Camassa-Holm equation
Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system
1. | Unité de recherche, Multifractals et Ondelettes, FSM, University of Monastir, 5019 Monastir, Tunisia |
2. | IPEIK, University of Kairouan, 3100 Kairouan, Tunisia |
The main goal of this paper is to study the asymptotic behavior of a coupled Klein-Gordon-Schrödinger system in three dimensional unbounded domain. We prove the existence of a global attractor of the systems of the nonlinear Klein-Gordon-Schrödinger (KGS) equations in $ H^1({\mathbb R}^3)\times H^1({\mathbb R}^3)\times L^2({\mathbb R}^3) $ and more particularly that this attractor is in fact a compact set of $ H^2({\mathbb R}^3)\times H^2({\mathbb R}^3)\times H^1({\mathbb R}^3) $.
References:
[1] |
M. Abounouh, O. Goubet and A. Hakim,
Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Differ. Integral Equ., 16 (2003), 573-581.
|
[2] |
B. Alouini,
Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 10 (2015), 1781-1801.
doi: 10.3934/cpaa.2015.14.1781. |
[3] |
A. Bachelot,
Problème de Cauchy pour des systèmes hyperboliques semi-linéaires, Ann. Inst. H. Poincaré Anal. Non Lináires, 1 (1984), 453-478.
|
[4] |
P. Biler,
Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.
doi: 10.1137/0521065. |
[5] |
M. M. Cavalcanti and V. N. Domingos Cavalcanti, Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations, Nonlinear Differ. Equ. Appl., 7 (2000), 285–307. Birkhäuser Verlag, Basel, 2000
doi: 10.1007/PL00001426. |
[6] |
T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Metodos Matématicos, 1996. |
[7] |
I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the Amerrican Mathematical Society, 2008.
doi: 10.1090/memo/0912. |
[8] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations, Ⅱ, J. Math. Anal. Appl., 66 (1978), 358-378.
doi: 10.1016/0022-247X(78)90239-1. |
[9] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations, Ⅲ, Math. Japon., 24 (1979), 307-321.
|
[10] |
J. M. Ghidaglia and R. Temam,
Attractors for damped nonlinear hyperbolic equations, J. Math. Pures et Appl., 66 (1987), 273-319.
|
[11] |
O. Goubet,
Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $\mathbb{R}^2$,, Adv. Differ. Equ., 3 (1998), 337-360.
|
[12] |
B. Guo and Y. Li,
Attractors for Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Differ. Equ., 136 (1997), 356-377.
doi: 10.1006/jdeq.1996.3242. |
[13] |
N. Hayashi and W. von Wahl,
On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japon, 39 (1987), 489-497.
doi: 10.2969/jmsj/03930489. |
[14] |
K. Lu and B. Wang,
Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differ. Equ., 170 (2001), 281-316.
doi: 10.1006/jdeq.2000.3827. |
[15] |
Y. Meyer, Ondelettes et Opérateurs Ⅰ: Ondelettes, Ed. Hermann, 1990. |
[16] |
C. Miao and G. Xu,
Global solutions of the Klein-Gordon-Schrödinger system with rough data in $\mathbb{R}^{2+1}$, J. Differ. Equ., 227 (2006), 365-405.
doi: 10.1016/j.jde.2005.10.012. |
[17] |
S. Missaoui and E. Zahrouni,
Regularity of the Attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$, Commun. Pure Appl. Anal., 14 (2015), 695-716.
doi: 10.3934/cpaa.2015.14.695. |
[18] |
J. Y. Park and J. A. Kim,
Maximal attractors for the Klein-Gordon-Schrödinger equation in unbounded domain, Acta Appl. Math., 108 (2009), 197-213.
doi: 10.1007/s10440-008-9309-0. |
[19] |
T. Runst and W. Sickel, Sobolev spaces of Fractional order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis And Applications 3. Walter de Gruyter Berlin-New York, 1996.
doi: 10.1515/9783110812411. |
[20] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
![]() ![]() |
[21] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer Applied Mathematics Sciences, Second edition, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[22] |
X. Wang,
An energy equation for weakly damped driven nonlinear Schrödinger equations, Physica D, 88D (1995), 165-177.
doi: 10.1016/0167-2789(95)00196-B. |
show all references
References:
[1] |
M. Abounouh, O. Goubet and A. Hakim,
Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Differ. Integral Equ., 16 (2003), 573-581.
|
[2] |
B. Alouini,
Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 10 (2015), 1781-1801.
doi: 10.3934/cpaa.2015.14.1781. |
[3] |
A. Bachelot,
Problème de Cauchy pour des systèmes hyperboliques semi-linéaires, Ann. Inst. H. Poincaré Anal. Non Lináires, 1 (1984), 453-478.
|
[4] |
P. Biler,
Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.
doi: 10.1137/0521065. |
[5] |
M. M. Cavalcanti and V. N. Domingos Cavalcanti, Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations, Nonlinear Differ. Equ. Appl., 7 (2000), 285–307. Birkhäuser Verlag, Basel, 2000
doi: 10.1007/PL00001426. |
[6] |
T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Metodos Matématicos, 1996. |
[7] |
I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the Amerrican Mathematical Society, 2008.
doi: 10.1090/memo/0912. |
[8] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations, Ⅱ, J. Math. Anal. Appl., 66 (1978), 358-378.
doi: 10.1016/0022-247X(78)90239-1. |
[9] |
I. Fukuda and M. Tsutsumi,
On coupled Klein-Gordon-Schrödinger equations, Ⅲ, Math. Japon., 24 (1979), 307-321.
|
[10] |
J. M. Ghidaglia and R. Temam,
Attractors for damped nonlinear hyperbolic equations, J. Math. Pures et Appl., 66 (1987), 273-319.
|
[11] |
O. Goubet,
Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $\mathbb{R}^2$,, Adv. Differ. Equ., 3 (1998), 337-360.
|
[12] |
B. Guo and Y. Li,
Attractors for Klein-Gordon-Schrödinger equations in $\mathbb{R}^3$, J. Differ. Equ., 136 (1997), 356-377.
doi: 10.1006/jdeq.1996.3242. |
[13] |
N. Hayashi and W. von Wahl,
On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japon, 39 (1987), 489-497.
doi: 10.2969/jmsj/03930489. |
[14] |
K. Lu and B. Wang,
Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains, J. Differ. Equ., 170 (2001), 281-316.
doi: 10.1006/jdeq.2000.3827. |
[15] |
Y. Meyer, Ondelettes et Opérateurs Ⅰ: Ondelettes, Ed. Hermann, 1990. |
[16] |
C. Miao and G. Xu,
Global solutions of the Klein-Gordon-Schrödinger system with rough data in $\mathbb{R}^{2+1}$, J. Differ. Equ., 227 (2006), 365-405.
doi: 10.1016/j.jde.2005.10.012. |
[17] |
S. Missaoui and E. Zahrouni,
Regularity of the Attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$, Commun. Pure Appl. Anal., 14 (2015), 695-716.
doi: 10.3934/cpaa.2015.14.695. |
[18] |
J. Y. Park and J. A. Kim,
Maximal attractors for the Klein-Gordon-Schrödinger equation in unbounded domain, Acta Appl. Math., 108 (2009), 197-213.
doi: 10.1007/s10440-008-9309-0. |
[19] |
T. Runst and W. Sickel, Sobolev spaces of Fractional order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis And Applications 3. Walter de Gruyter Berlin-New York, 1996.
doi: 10.1515/9783110812411. |
[20] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
![]() ![]() |
[21] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer Applied Mathematics Sciences, Second edition, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[22] |
X. Wang,
An energy equation for weakly damped driven nonlinear Schrödinger equations, Physica D, 88D (1995), 165-177.
doi: 10.1016/0167-2789(95)00196-B. |
[1] |
Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55 |
[2] |
Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 |
[3] |
Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221 |
[4] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149 |
[5] |
E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 |
[6] |
Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure and Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413 |
[7] |
Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122 |
[8] |
Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077 |
[9] |
A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097 |
[10] |
Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041 |
[11] |
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 |
[12] |
Ahmed Y. Abdallah, Taqwa M. Al-Khader, Heba N. Abu-Shaab. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022006 |
[13] |
Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022065 |
[14] |
Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239 |
[15] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Global attractor for a Klein-Gordon-Schrodinger type system. Conference Publications, 2007, 2007 (Special) : 844-854. doi: 10.3934/proc.2007.2007.844 |
[16] |
Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060 |
[17] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031 |
[18] |
Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233 |
[19] |
P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029 |
[20] |
Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]