In this paper, we study the following coupled nonlinear Schrödinger system of the form
$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $
for $ m = 2,3 $, where $ \Omega\subset \mathbb{R}^N $ is a bounded domain or $ \mathbb{R}^N $, $ N\geq 3 $, $ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $, $ \kappa_i\in\mathbb{R} $, $ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $ and $ \lambda>0 $ is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.
Citation: |
[1] |
N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661-2664.
![]() |
[2] |
A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.
doi: 10.1112/jlms/jdl020.![]() ![]() ![]() |
[3] |
A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Univ. Press, 2006.
![]() ![]() |
[4] |
T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y.![]() ![]() ![]() |
[5] |
T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Differ. Equ., 19 (2006), 200-207.
![]() ![]() |
[6] |
T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory. Appl., 2 (2007), 353-367.
doi: 10.1007/s11784-007-0033-6.![]() ![]() ![]() |
[7] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
[8] |
Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differ. Equ., 48 (2013), 695-711.
doi: 10.1007/s00526-012-0568-2.![]() ![]() ![]() |
[9] |
M. Clapp and J. Faya, Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains, Discrete Contin. Dyn. Syst., 39 (2019), 3265-3289.
doi: 10.3934/dcds.2019135.![]() ![]() ![]() |
[10] |
M. Clapp and A. Szulkin, Solutions to indefinite weakly coupled cooperative ellipitic systems, preprint, arXiv: 2003.12343v1.
![]() |
[11] |
N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Ist. H. Poincaré Anal. Non Linéaire., 27 (2010), 953-969.
doi: 10.1016/j.anihpc.2010.01.009.![]() ![]() ![]() |
[12] |
W. Y. Ding, On a conformally invariant elliptic equation on $\mathbb{R}^n$, Commun. Math. Phys., 107 (1986), 331-335.
![]() ![]() |
[13] |
B. Esry, C. Greene, J. Burke and J. Bohn, Hartree-Fock theory for double condesates, Phys. Rev. Lett., 78 (1997), 3594-3597.
![]() |
[14] |
D. J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condesates: from theory to experiments, J. Phys. A, 43 (2010), 213001.
doi: 10.1088/1751-8113/43/21/213001.![]() ![]() ![]() |
[15] |
F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Differ. Equ., 2 (1997), 555-572.
![]() ![]() |
[16] |
Yu. S. Kivshar and B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Reports, 298 (1998), 81-197.
doi: 10.1007/3-540-46629-0_8.![]() ![]() ![]() |
[17] |
T. C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbb{R}^n, n\leq3$, Commun. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x.![]() ![]() ![]() |
[18] |
S. Peng, Q. Wang and Z. Q. Wang, On coupled nonlinear Schrödinger systems with mixed couplings, Trans. Amer. Math. Soc., 371 (2019), 7559-7583.
doi: 10.1090/tran/7383.![]() ![]() ![]() |
[19] |
A. Szulkin, T. Weth and M. Willem, Ground state solutions for a semilinear problem with critical exponent, Differ. Integral Equ., 22 (2009), 913-926.
![]() ![]() |
[20] |
A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
[21] |
M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[22] |
M. Willem, Analyse Harmonique Réelle, Hermann, Paris, 1995.
![]() ![]() |