March  2022, 21(3): 797-816. doi: 10.3934/cpaa.2021199

Asymptotic and quenching behaviors of semilinear parabolic systems with singular nonlinearities

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China

*Corresponding author

Received  August 2021 Revised  October 2021 Published  March 2022 Early access  December 2021

Fund Project: The corresponding author is sponsored by "Chenguang Program" supported by Shanghai Educational Development Foundation and Shanghai Municipal Education Commission [grant number: 13CG20]; NSFC [grant number: 11431005]; and STCSM [grant number: 18dz2271000]

In this paper, we consider a family of parabolic systems with singular nonlinearities. We study the classification of global existence and quenching of solutions according to parameters and initial data. Furthermore, the rate of the convergence of the global solutions to the minimal steady state is given. Due to the lack of variational characterization of the first eigenvalue to the linearized elliptic problem associated with our parabolic system, some new ideas and techniques are introduced.

Citation: Qi Wang, Yanyan Zhang. Asymptotic and quenching behaviors of semilinear parabolic systems with singular nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 797-816. doi: 10.3934/cpaa.2021199
References:
[1]

Q. Y. Dai and Y. G. Gu, Quenching phenomena for systems of semilinear parabolic equations, I, Syst. Sci. Math. Sci., 10 (1997), 361-371. 

[2]

J. M. do Ó and R. Clemente, On lane-emden systems with singular nonlinearities and applications to MEMS, Adv. Nonlinear Stud., 18 (2018), 41-53.  doi: 10.1515/ans-2017-6024.

[3]

P. Esposito, N. Ghoussoub and Y. J. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, New York, Courant Lect. Notes Math., Courant Institute of Mathematical Sciences, New York University, 2010. doi: 10.1090/cln/020.

[4]

S. Filippas and J. S. Guo, Quenching profiles for one-dimensional semilinear heat equations, Quart. Appl. Math., 51 (1993), 713-729.  doi: 10.1090/qam/1247436.

[5]

H. Fujita, On the nonlinear equations ${\Delta} u+e^u = 0$ and ${\partial v}/{\partial t} = {\Delta} v+e^v$, Bull. Amer. Math. Soc., 75 (1969), 132-135.  doi: 10.1090/S0002-9904-1969-12175-0.

[6]

Y. J. Guo, Y. Y. Zhang and F. Zhou, Singular behavior of an electrostatic-elastic membrane system with an external pressure, Nonlinear Anal., 190 (2020), 111611, 29 pp. doi: 10.1016/j.na.2019.111611..

[7]

H. Kawarada, On solutions of initial-boundary problem for $u_t = u_xx+1/(1-u)$, Publ. Res. Inst. Math. Sci., 10 (1975), 729-736. 

[8]

N. I. KavallarisA. A. LaceyC. V. Nikolopoulos and D. E. Tzanetis, On the quenching behaviour of a semilinear wave equation modelling MEMS technology, Discret. Contin. Dynam. Syst. A, 35 (2015), 1009-1037. 

[9]

N. I. Kavallaris and T. Suzuki, Non-Local Partial Differential Equations for Engineering and Biology, Mathematical Modeling and Analysis, Mathematics for Industry, Springer Nature, 2018.

[10]

Z. Jia, Z. D. Yang and C. Y. Wang, Non-simultaneous quenching in a semi-linear parabolic system with multi-singular reaction terms, Electron. J. Differ. Equ., 100 (2019), 13 pp.

[11]

J. Y. Li and C. C. Liang, Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS, Discret. Contin. Dyn. Syst., 36 (2016), 833-849.  doi: 10.3934/dcds.2016.36.833.

[12]

M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.  doi: 10.1112/S0024609305004248.

[13] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York, Plenum Press, 1992. 
[14]

H. J. Pei and Z. P. Li, Quenching for a parabolic system with general singular terms, J. Nonlinear Sci. Appl., 9 (2016), 5281-5290.  doi: 10.22436/jnsa.009.08.14.

[15]

M. H. Protter and H. Weinberger, Maximum Principles in Differential Equations, Englewood Cliffs, New Jersey, Prentice-Hall, 1967. doi: 10.1007/978-1-4612-5282-5.

[16]

Q. Wang, On some touchdown behaviours of the generalized MEMS device equation, Commun. Pure Appl. Anal., 15 (2016), 2447-2456. 

[17]

Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chin. Ann. Math., 39 (2018), 129-144.  doi: 10.1007/s11401-018-1056-6.

[18]

Q. Wang, Dynamical solutions of singular parabolic equations modeling electrostatic MEMS, Nonlinear Differ. Equ. Appl., 22 (2015), 629-650.  doi: 10.1007/s00030-014-0298-6.

[19]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. Partial Differ. Equ., 37 (2010), 259-274.  doi: 10.1007/s00526-009-0262-1.

[20]

S. N. Zheng and W. Wang, Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system, Nonlinear Anal., 69 (2008), 2274-2285.  doi: 10.1016/j.na.2007.08.007.

[21]

S. M. Zheng, Nonliear Evolution Equations, Boca Raton, Florida, Chapman & Hall/CRC, 2004.

show all references

References:
[1]

Q. Y. Dai and Y. G. Gu, Quenching phenomena for systems of semilinear parabolic equations, I, Syst. Sci. Math. Sci., 10 (1997), 361-371. 

[2]

J. M. do Ó and R. Clemente, On lane-emden systems with singular nonlinearities and applications to MEMS, Adv. Nonlinear Stud., 18 (2018), 41-53.  doi: 10.1515/ans-2017-6024.

[3]

P. Esposito, N. Ghoussoub and Y. J. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, New York, Courant Lect. Notes Math., Courant Institute of Mathematical Sciences, New York University, 2010. doi: 10.1090/cln/020.

[4]

S. Filippas and J. S. Guo, Quenching profiles for one-dimensional semilinear heat equations, Quart. Appl. Math., 51 (1993), 713-729.  doi: 10.1090/qam/1247436.

[5]

H. Fujita, On the nonlinear equations ${\Delta} u+e^u = 0$ and ${\partial v}/{\partial t} = {\Delta} v+e^v$, Bull. Amer. Math. Soc., 75 (1969), 132-135.  doi: 10.1090/S0002-9904-1969-12175-0.

[6]

Y. J. Guo, Y. Y. Zhang and F. Zhou, Singular behavior of an electrostatic-elastic membrane system with an external pressure, Nonlinear Anal., 190 (2020), 111611, 29 pp. doi: 10.1016/j.na.2019.111611..

[7]

H. Kawarada, On solutions of initial-boundary problem for $u_t = u_xx+1/(1-u)$, Publ. Res. Inst. Math. Sci., 10 (1975), 729-736. 

[8]

N. I. KavallarisA. A. LaceyC. V. Nikolopoulos and D. E. Tzanetis, On the quenching behaviour of a semilinear wave equation modelling MEMS technology, Discret. Contin. Dynam. Syst. A, 35 (2015), 1009-1037. 

[9]

N. I. Kavallaris and T. Suzuki, Non-Local Partial Differential Equations for Engineering and Biology, Mathematical Modeling and Analysis, Mathematics for Industry, Springer Nature, 2018.

[10]

Z. Jia, Z. D. Yang and C. Y. Wang, Non-simultaneous quenching in a semi-linear parabolic system with multi-singular reaction terms, Electron. J. Differ. Equ., 100 (2019), 13 pp.

[11]

J. Y. Li and C. C. Liang, Viscosity dominated limit of global solutions to a hyperbolic equation in MEMS, Discret. Contin. Dyn. Syst., 36 (2016), 833-849.  doi: 10.3934/dcds.2016.36.833.

[12]

M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.  doi: 10.1112/S0024609305004248.

[13] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, New York, Plenum Press, 1992. 
[14]

H. J. Pei and Z. P. Li, Quenching for a parabolic system with general singular terms, J. Nonlinear Sci. Appl., 9 (2016), 5281-5290.  doi: 10.22436/jnsa.009.08.14.

[15]

M. H. Protter and H. Weinberger, Maximum Principles in Differential Equations, Englewood Cliffs, New Jersey, Prentice-Hall, 1967. doi: 10.1007/978-1-4612-5282-5.

[16]

Q. Wang, On some touchdown behaviours of the generalized MEMS device equation, Commun. Pure Appl. Anal., 15 (2016), 2447-2456. 

[17]

Q. Wang, Quenching phenomenon for a parabolic MEMS equation, Chin. Ann. Math., 39 (2018), 129-144.  doi: 10.1007/s11401-018-1056-6.

[18]

Q. Wang, Dynamical solutions of singular parabolic equations modeling electrostatic MEMS, Nonlinear Differ. Equ. Appl., 22 (2015), 629-650.  doi: 10.1007/s00030-014-0298-6.

[19]

D. Ye and F. Zhou, On a general family of nonautonomous elliptic and parabolic equations, Calc. Var. Partial Differ. Equ., 37 (2010), 259-274.  doi: 10.1007/s00526-009-0262-1.

[20]

S. N. Zheng and W. Wang, Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system, Nonlinear Anal., 69 (2008), 2274-2285.  doi: 10.1016/j.na.2007.08.007.

[21]

S. M. Zheng, Nonliear Evolution Equations, Boca Raton, Florida, Chapman & Hall/CRC, 2004.

Figure 1.  The critical curve $ \Gamma $ in $ ( \lambda,\mu) $-plane
[1]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[2]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[3]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[4]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[5]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[8]

Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767

[9]

Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045

[10]

Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121

[11]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[12]

Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316

[13]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[14]

Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 155-179. doi: 10.3934/cpaa.2006.5.155

[15]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[16]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure and Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[17]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002

[18]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[19]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007

[20]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (186)
  • HTML views (148)
  • Cited by (0)

Other articles
by authors

[Back to Top]