• Previous Article
    Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Uniqueness and sign properties of minimizers in a quasilinear indefinite problem
doi: 10.3934/cpaa.2021201
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Radial symmetry of nonnegative solutions for nonlinear integral systems

School of Mathematical Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China

*Corresponding author

Received  May 2021 Revised  November 2021 Early access December 2021

Fund Project: The first author is supported by China Postdoctoral Science Foundation No.2021M692085. The second author is partially supported by NSFC Grant 11771285 and 12031012

In this paper, we investigate the nonnegative solutions of the nonlinear singular integral system
$ \begin{equation} \left\{ \begin{array}{lll} u_i(x) = \int_{\mathbb{R}^n}\frac{1}{|x-y|^{n-\alpha}|y|^{a_i}}f_i(u(y))dy,\quad x\in\mathbb{R}^n,\quad i = 1,2\cdots,m,\\ 0<\alpha<n,\quad u(x) = (u_1(x),\cdots,u_m(x)),\nonumber \end{array}\right. \end{equation} $
where
$ 0<a_i/2<\alpha $
,
$ f_i(u) $
,
$ 1\leq i\leq m $
, are real-valued functions, nonnegative and monotone nondecreasing with respect to the independent variables
$ u_1 $
,
$ u_2 $
,
$ \cdots $
,
$ u_m $
. By the method of moving planes in integral forms, we show that the nonnegative solution
$ u = (u_1,u_2,\cdots,u_m) $
is radially symmetric when
$ f_i $
satisfies some monotonicity condition.
Citation: Zhenjie Li, Chunqin Zhou. Radial symmetry of nonnegative solutions for nonlinear integral systems. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021201
References:
[1]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems, Indiana. Univ. Math. J., 51 (2002), 37-51.   Google Scholar

[2]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure. Appl. Math., 42 (1989), 271-297.  doi: 10.1002/3160420304.  Google Scholar

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta. Math. Scie., 29B (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[4]

W. Chen and C Li, Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure. Appl. Anna., 12 (2013), 2497-2514.  doi: 10.3934/2013.12.2497.  Google Scholar

[5]

D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Anna. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397.   Google Scholar

[6]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $\mathbb{R}^n$, collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981.,  Google Scholar

[7]

D. LiP. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with Hardy terms, J. Math. Anal. Appl., 424 (2015), 915-931.  doi: 10.1016/2014.11.029.  Google Scholar

[8]

Y. Lv and C. Zhou, Symmetry for an integral system with general nonlinearity, Disc. Cont. Dyna. Syst., 39 (2019), 1533-1543.  doi: 10.3934/dcds.2018121.  Google Scholar

[9]

E. Mitidieri, Non-existence of positive solutions of semilinear systems in $\mathbb{R}^n$, Differ. Int. Equ., 9 (1996), 465-479.   Google Scholar

[10]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1996), 369-380.   Google Scholar

[11]

J. Serrin and H. Zou, The existence of positive solutions of elliptic Hamiltonian system, Commun. Partial Differ. Equ., 23 (1998), 577-599.  doi: 10.1080/03605309808821356.  Google Scholar

[12]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for nonlinear system involving the fractional Laplacian, Disc. Cont. Dyn. Sys., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

show all references

References:
[1]

J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden systems, Indiana. Univ. Math. J., 51 (2002), 37-51.   Google Scholar

[2]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure. Appl. Math., 42 (1989), 271-297.  doi: 10.1002/3160420304.  Google Scholar

[3]

W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta. Math. Scie., 29B (2009), 949-960.  doi: 10.1016/S0252-9602(09)60079-5.  Google Scholar

[4]

W. Chen and C Li, Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure. Appl. Anna., 12 (2013), 2497-2514.  doi: 10.3934/2013.12.2497.  Google Scholar

[5]

D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Anna. Scuola Norm. Sup. Pisa Cl. Sci., 21 (1994), 387-397.   Google Scholar

[6]

B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $\mathbb{R}^n$, collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981.,  Google Scholar

[7]

D. LiP. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with Hardy terms, J. Math. Anal. Appl., 424 (2015), 915-931.  doi: 10.1016/2014.11.029.  Google Scholar

[8]

Y. Lv and C. Zhou, Symmetry for an integral system with general nonlinearity, Disc. Cont. Dyna. Syst., 39 (2019), 1533-1543.  doi: 10.3934/dcds.2018121.  Google Scholar

[9]

E. Mitidieri, Non-existence of positive solutions of semilinear systems in $\mathbb{R}^n$, Differ. Int. Equ., 9 (1996), 465-479.   Google Scholar

[10]

J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena. Sippl., 46 (1996), 369-380.   Google Scholar

[11]

J. Serrin and H. Zou, The existence of positive solutions of elliptic Hamiltonian system, Commun. Partial Differ. Equ., 23 (1998), 577-599.  doi: 10.1080/03605309808821356.  Google Scholar

[12]

R. ZhuoW. ChenX. Cui and Z. Yuan, Symmetry and non-existence of solutions for nonlinear system involving the fractional Laplacian, Disc. Cont. Dyn. Sys., 36 (2016), 1125-1141.  doi: 10.3934/dcds.2016.36.1125.  Google Scholar

[1]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[2]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[3]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[4]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[5]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[6]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[7]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[8]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022

[9]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[10]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[11]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[12]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[13]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[14]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[15]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[16]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[17]

Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074

[18]

Yutian Lei. On the integral systems with negative exponents. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039

[19]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[20]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (81)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]