We study the existence of an inertial manifold for the solutions to fully non-autonomous parabolic differential equation of the form
$ \dfrac{du}{dt} + A(t)u(t) = f(t,u),\, t> s. $
We prove the existence of such an inertial manifold in the case that the family of linear partial differential operators $ (A(t))_{t\in { \mathbb {R}}} $ generates an evolution family $ (U(t,s))_{t\ge s} $ satisfying certain dichotomy estimates, and the nonlinear forcing term $ f(t,x) $ satisfies the Lipschitz condition such that certain dichotomy gap condition holds.
Citation: |
[1] |
P. Acquistapace and B. Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107.
![]() ![]() |
[2] |
P. Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differ. Integral Equ., 1 (1988), 433-457.
![]() ![]() |
[3] |
I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynam. Differ. Equ., 13 (2001), 355-380.
doi: 10.1023/A:1016684108862.![]() ![]() ![]() |
[4] |
P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, 1989.
doi: 10.1007/BF01048790.![]() ![]() ![]() |
[5] |
A. Debussche and R. Temam, Inertial manifolds and the slow manifolds in meteorology, Differ. Integral Equ., 4 (1991), 897-931.
![]() ![]() |
[6] |
A. Debussche and R. Temam, Some new generalizations of inertial manifolds, Discrete and Continuous Dynamical Systems, 2 (1996), 543-558.
doi: 10.3934/dcds.1996.2.543.![]() ![]() ![]() |
[7] |
C. Foias, G. R. Sell, and R. Temam, Variétés inertielles des équations différentielles dissipatives, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 301 (1985), 139–142.
![]() ![]() |
[8] |
K. Furuya and A. Yagi, Linearized stability for abstract quasilinear equations of parabolic type, Funkcial. Ekvac., 37 (1994), 483-504.
![]() ![]() |
[9] |
K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, 2000.
![]() ![]() |
[10] |
N. T. Huy, Inertial Manifolds for Semi-linear Parabolic Equations in Admissible Spaces, J. Math. Anal. Appl., 386 (2012), 894-909.
doi: 10.1016/j.jmaa.2011.08.051.![]() ![]() ![]() |
[11] |
N. T. Huy, Admissibly inertial manifolds for a class of semi-linear evolution equations, J. Differ. Equ., 254 (2013), 2638-2660.
doi: 10.4064/ap112-2-3.![]() ![]() ![]() |
[12] |
N. T. Huy and X. Q. Bui, Competition models with diffusion, analytic semigroups, and inertial manifolds, Math. Method. Appl. Sci., 41 (2018), 8182-8200.
doi: 10.1002/mma.5281.![]() ![]() ![]() |
[13] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
![]() ![]() |
[14] |
M. Kwak, Finite-dimensional inertial forms for the 2D Navier-Stokes equations, Indiana Uni. Math. J., 41 (1992), 927-981.
doi: 10.1512/iumj.1992.41.41051.![]() ![]() ![]() |
[15] |
A. J. Linot and M. D. Graham, Deep learning to discover and predict dynamics on an inertial manifold, Phys. Rev. E, 101 (2020), 8 pp.
doi: 10.1103/physreve.101.062209.![]() ![]() ![]() |
[16] |
N. V. Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line, Integral Equ. Operat. Theor., 32 (1998), 332-353.
doi: 10.1007/BF01203774.![]() ![]() ![]() |
[17] |
J. D. Murray, Mathematical Biology Ⅱ: Spatial Models and Biomedical Applications, Springer-Verlag Berlin (2003).
![]() ![]() |
[18] |
R. Nagel and G. Nickel, Well-posedness for non-autonomous abstract Cauchy problems, Progr. Nonlinear Differ. Equ. Appl., 50 (2002), 279-293.
![]() ![]() |
[19] |
A. Pazy, Semigroup of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, Berlin, 1983
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[20] |
R. Rosa, Exact finite dimensional feedback control via inertial manifold theory with application to the Chafee–Infante equation, J. Dynam. Differ. Equ., 15 (2003), 61-86.
doi: 10.1023/A:1026153311546.![]() ![]() ![]() |
[21] |
G. R. Sell, Inertial manifolds: The non-self-adjoint case, J. Differ. Equ., 96 (1992), 203-255.
doi: 10.1016/0022-0396(92)90152-D.![]() ![]() ![]() |
[22] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, 2002.
doi: 10.1007/978-1-4757-5037-9.![]() ![]() ![]() |
[23] |
S. Takagi, Smoothness of inertial manifolds for semilinear evolution equations in complex Banach spaces, Differ. Integral Equ., 21 (2008), 63-80.
![]() ![]() |
[24] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York 1988.
doi: 10.1007/978-1-4684-0313-8.![]() ![]() ![]() |
[25] |
S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Roy. Soc. Edinb. Sec. A, 144 (2014), 1245-1327.
doi: 10.1017/S0308210513000073.![]() ![]() ![]() |