\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type

  • * Corresponding author

    * Corresponding author

This work is supported by the National Natural Science Foundation of China (No:11971485) and the NSFC (11871475)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:

    $ \left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P) $

    where $ b>0 $ is a parameter, $ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $, $ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $ and $ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $. Under some "Berestycki-Lions type assumptions" on the nonlinearity $ f $ which are almost necessary, we prove that problem $ (\rm P) $ has a nontrivial solution $ \bar{u}\in H^{1}(\mathbb{R}^{3}) $ such that $ \bar{v} = G(\bar{u}) $ is a ground state solution of the following problem

    $ -\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P}) $

    where $ G(t): = \int_{0}^{t} g(s) ds $. We also give a minimax characterization for the ground state solution $ \bar{v} $.

    Mathematics Subject Classification: Primary: 35J50, 35J62; Secondary: 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Berestycki and P. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.
    [2] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc Amer Math Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.
    [3] S. Cuccagna, On instability of excited states of the nonlinear quasilinear Schrödinger equation, Phys. D., 238 (2009), 38-54.  doi: 10.1016/j.physd.2008.08.010.
    [4] S. Chen and X. Tang, Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal., 9 (2020), 496-515.  doi: 10.1515/anona-2020-0011.
    [5] J. ChenX. TangZ. Gao and B. Cheng, Ground state sign-changing solutions for a class of generelized quasilinear Schrödinger equations with Kirchhoff-type perturbation, J. Fixed Point Theory Appl., 19 (2017), 3127-3149.  doi: 10.1007/s11784-017-0475-4.
    [6] M. Colin and L. Jeanjean, Louis solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.
    [7] J. ChenX. Tang and B. Cheng, Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent, J. Math. Phys., 59 (2018), 021505.  doi: 10.1063/1.5024898.
    [8] Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 260 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.
    [9] Y. DengW. Huang and S. Zhang, Ground state solutions for generalized quasilinear Schrödinger equations with critical growth and lower power subcritical perturbation, Adv. Nonlinear Stud., 19 (2019), 219-237.  doi: 10.1515/ans-2018-2029.
    [10] Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equ., 259 (2015), 2884-2902.  doi: 10.1016/j.jde.2015.04.005.
    [11] D. Hu, X. Tang and Q. Zhang, Existence of ground state solutions for Kirchhoff-type problem with variable potential, Appl. Anal., (2021), 1–14. doi: 10.1080/00036811.2021.1947499.
    [12] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A., 129 (1999), 787-809.  doi: 10.1017/S0308210500013147.
    [13] L. Jeanjean and J. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 23-28.  doi: 10.1016/S0764-4442(98)80097-9.
    [14] G. Kirchhoff, Mechanik, Teubner, Leipzig., 1883.
    [15] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.
    [16] F. LiX. Zhu and Z. Liang, Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl., 443 (2016), 11-38.  doi: 10.1016/j.jmaa.2016.05.005.
    [17] J. LiuY. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.
    [18] J. Liu and Z. Wang, Multiple solutions for quasilinear elliptic equations with a finite potential well, Nonlinear Anal. RWA., 257 (2014), 2874-2899.  doi: 10.1016/j.jde.2014.06.002.
    [19] X. LiuJ. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.
    [20] P. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann Inst H Poincaré Anal Non Linéaire, 1 (1984), 109-145. 
    [21] J. LiuY. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.
    [22] Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.
    [23] X. Tang and S. Chen, Ground stste solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ., 56 (2017), 110-134.  doi: 10.1007/s00526-017-1214-9.
    [24] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.
    [25] J. Zhao and X. Liu, Ground state solutions for quasilinear equations of Kirchhoff type, J. Differ. Equ., 2020 (2020), 1-14. 
    [26] Q. Zhang and D. Hu, Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type, Complex Var. Elliptic Equ., (2021), 1–15. doi: 10.1080/17476933.2021.1916918.
    [27] J. Zhang, X. Tang and D. Qin, Infinitely many solutions for Kirchhoff problems with lack of compactness, Nonlinear Anal., 197 (2020), 111856, 31 pp. doi: 10.1016/j.na.2020.111856.
  • 加载中
SHARE

Article Metrics

HTML views(608) PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return