In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:
$ \left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P) $
where $ b>0 $ is a parameter, $ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $, $ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $ and $ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $. Under some "Berestycki-Lions type assumptions" on the nonlinearity $ f $ which are almost necessary, we prove that problem $ (\rm P) $ has a nontrivial solution $ \bar{u}\in H^{1}(\mathbb{R}^{3}) $ such that $ \bar{v} = G(\bar{u}) $ is a ground state solution of the following problem
$ -\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P}) $
where $ G(t): = \int_{0}^{t} g(s) ds $. We also give a minimax characterization for the ground state solution $ \bar{v} $.
Citation: |
[1] |
H. Berestycki and P. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[2] |
H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc Amer Math Soc., 88 (1983), 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
[3] |
S. Cuccagna, On instability of excited states of the nonlinear quasilinear Schrödinger equation, Phys. D., 238 (2009), 38-54.
doi: 10.1016/j.physd.2008.08.010.![]() ![]() ![]() |
[4] |
S. Chen and X. Tang, Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal., 9 (2020), 496-515.
doi: 10.1515/anona-2020-0011.![]() ![]() ![]() |
[5] |
J. Chen, X. Tang, Z. Gao and B. Cheng, Ground state sign-changing solutions for a class of generelized quasilinear Schrödinger equations with Kirchhoff-type perturbation, J. Fixed Point Theory Appl., 19 (2017), 3127-3149.
doi: 10.1007/s11784-017-0475-4.![]() ![]() ![]() |
[6] |
M. Colin and L. Jeanjean, Louis solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008.![]() ![]() ![]() |
[7] |
J. Chen, X. Tang and B. Cheng, Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent, J. Math. Phys., 59 (2018), 021505.
doi: 10.1063/1.5024898.![]() ![]() ![]() |
[8] |
Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 260 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006.![]() ![]() ![]() |
[9] |
Y. Deng, W. Huang and S. Zhang, Ground state solutions for generalized quasilinear Schrödinger equations with critical growth and lower power subcritical perturbation, Adv. Nonlinear Stud., 19 (2019), 219-237.
doi: 10.1515/ans-2018-2029.![]() ![]() ![]() |
[10] |
Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equ., 259 (2015), 2884-2902.
doi: 10.1016/j.jde.2015.04.005.![]() ![]() ![]() |
[11] |
D. Hu, X. Tang and Q. Zhang, Existence of ground state solutions for Kirchhoff-type problem with variable potential, Appl. Anal., (2021), 1–14.
doi: 10.1080/00036811.2021.1947499.![]() ![]() ![]() |
[12] |
L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A., 129 (1999), 787-809.
doi: 10.1017/S0308210500013147.![]() ![]() ![]() |
[13] |
L. Jeanjean and J. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 23-28.
doi: 10.1016/S0764-4442(98)80097-9.![]() ![]() ![]() |
[14] |
G. Kirchhoff, Mechanik, Teubner, Leipzig., 1883.
![]() |
[15] |
G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566-600.
doi: 10.1016/j.jde.2014.04.011.![]() ![]() ![]() |
[16] |
F. Li, X. Zhu and Z. Liang, Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl., 443 (2016), 11-38.
doi: 10.1016/j.jmaa.2016.05.005.![]() ![]() ![]() |
[17] |
J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differ. Equ., 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5.![]() ![]() ![]() |
[18] |
J. Liu and Z. Wang, Multiple solutions for quasilinear elliptic equations with a finite potential well, Nonlinear Anal. RWA., 257 (2014), 2874-2899.
doi: 10.1016/j.jde.2014.06.002.![]() ![]() ![]() |
[19] |
X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.
doi: 10.1090/S0002-9939-2012-11293-6.![]() ![]() ![]() |
[20] |
P. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann Inst H Poincaré Anal Non Linéaire, 1 (1984), 109-145.
![]() ![]() |
[21] |
J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.
doi: 10.1081/PDE-120037335.![]() ![]() ![]() |
[22] |
Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.
doi: 10.1016/j.na.2012.10.005.![]() ![]() ![]() |
[23] |
X. Tang and S. Chen, Ground stste solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ., 56 (2017), 110-134.
doi: 10.1007/s00526-017-1214-9.![]() ![]() ![]() |
[24] |
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[25] |
J. Zhao and X. Liu, Ground state solutions for quasilinear equations of Kirchhoff type, J. Differ. Equ., 2020 (2020), 1-14.
![]() ![]() |
[26] |
Q. Zhang and D. Hu, Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type, Complex Var. Elliptic Equ., (2021), 1–15.
doi: 10.1080/17476933.2021.1916918.![]() ![]() |
[27] |
J. Zhang, X. Tang and D. Qin, Infinitely many solutions for Kirchhoff problems with lack of compactness, Nonlinear Anal., 197 (2020), 111856, 31 pp.
doi: 10.1016/j.na.2020.111856.![]() ![]() ![]() |