
-
Previous Article
Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type
- CPAA Home
- This Issue
- Next Article
Asymptotic analysis for the electric field concentration with geometry of the core-shell structure
a. | Beijing Computational Science Research Center, Beijing 100193, China |
b. | School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
In the perfect conductivity problem arising from composites, the electric field may become arbitrarily large as $ \varepsilon $, the distance between the inclusions and the matrix boundary, tends to zero. In this paper, by making clear the singular role of the blow-up factor $ Q[\varphi] $ introduced in [
References:
[1] |
H. Ammari, G. Ciraolo, H. Kang, H. Lee and K. Yun,
Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration. Mech. Anal., 208 (2013), 275-304.
doi: 10.1007/s00205-012-0590-8. |
[2] |
H. Ammari, H. Kang and M. Lim, Gradient estimates to the conductivity problem, Math. Ann. 332 (2005), 277-286.
doi: 10.1007/s00208-004-0626-y. |
[3] |
H. Ammari, H. Kang, H. Lee, J. Lee and M. Lim,
Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., 88 (2007), 307-324.
doi: 10.1016/j.matpur.2007.07.005. |
[4] |
I. Babuška, B. Andersson, P. Smith and K. Levin,
Damage analysis of fiber composites. I. Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., 172 (1999), 27-77.
doi: 10.1016/S0045-7825(98)00225-4. |
[5] |
B. Budiansky and G. F. Carrier,
High shear stresses in stiff fiber composites, J. App. Mech., 51 (1984), 733-735.
|
[6] |
E. Bao, Y. Y. Li and B. Yin,
Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., 193 (2009), 195-226.
doi: 10.1007/s00205-008-0159-8. |
[7] |
E. Bao, Y. Y. Li and B. Yin,
Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Commun. Partial Differ. Equ., 35 (2010), 1982-2006.
doi: 10.1080/03605300903564000. |
[8] |
E. Bonnetier and F. Triki, Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs, Multi-scale and high-contrast PDE: from modeling, to mathematical analysis, to inversion, Contemp. Math., 577, Amer. Math. Soc., Providence, RI, 2012, pp. 81–91.
doi: 10.1090/conm/577. |
[9] |
E. Bonnetier and F. Triki,
On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D, Arch. Ration. Mech. Anal., 209 (2013), 541-567.
doi: 10.1007/s00205-013-0636-6. |
[10] |
E. Bonnetier and M. Vogelius,
An elliptic regularity result for a composite medium with ``touching'' fibers of circular cross-section, SIAM J. Math. Anal., 31 (2000), 651-677.
doi: 10.1137/S0036141098333980. |
[11] |
V. M. Calo, Y. Efendiev and J. Galvis,
Asymptotic expansions for high-contrast elliptic equations, Math. Models Methods Appl. Sci., 24 (2014), 465-494.
doi: 10.1142/S0218202513500565. |
[12] |
G. Ciraolo and A. Sciammetta,
Gradient estimates for the perfect conductivity problem in anisotropic media, J. Math. Pures Appl., 127 (2019), 268-298.
doi: 10.1016/j.matpur.2018.09.006. |
[13] |
G. Ciraolo and A. Sciammetta,
Stress concentration for closely located inclusions in nonlinear perfect conductivity problems, J. Differ. Equ., 266 (2019), 6149-6178.
doi: 10.1016/j.jde.2018.10.041. |
[14] |
H. J. Dong and H. G. Li,
Optimal estimates for the conductivity problem by Green's function method, Arch. Ration. Mech. Anal., 231 (2019), 1427-1453.
doi: 10.1007/s00205-018-1301-x. |
[15] |
Y. Gorb and A. Novikov,
Blow-up of solutions to a $p$-Laplace equation, Multiscale Model. Simul., 10 (2012), 727-743.
doi: 10.1137/110857167. |
[16] |
Y. Gorb,
Singular behavior of electric field of high-contrast concentrated composites, Multiscale Model. Simul., 13 (2015), 1312-1326.
doi: 10.1137/140982076. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998. |
[18] |
J. B. Keller,
Stresses in narrow regions, Trans. ASME J. Appl. Mech., 60 (1993), 1054-1056.
|
[19] |
H. Kang, M. Lim and K. Yun,
Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities, J. Math. Pures Appl., 9 (2013), 234-249.
doi: 10.1016/j.matpur.2012.06.013. |
[20] |
H. Kang, M. Lim and K. Yun,
Characterization of the electric field concentration between two adjacent spherical perfect conductors, SIAM J. Appl. Math., 74 (2014), 125-146.
doi: 10.1137/130922434. |
[21] |
H. Kang, H. Lee and K. Yun,
Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions, Math. Ann., 363 (2015), 1281-1306.
doi: 10.1007/s00208-015-1203-2. |
[22] |
J. Kim and M. Lim,
Electric field concentration in the presence of an inclusion with eccentric core-shell geometry, Math. Ann., 373 (2019), 517-551.
doi: 10.1007/s00208-018-1688-6. |
[23] |
J. Lekner,
Electrostatics of two charged conducting spheres, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 2829-2848.
doi: 10.1098/rspa.2012.0133. |
[24] |
H. G. Li, Y. Y. Li, E. S. Bao and B. Yin, Derivative estimates of solutions of elliptic systems in narrow regions, Quart. Appl. Math. 72 (2014), 589–596.
doi: 10.1090/S0033-569X-2014-01339-0. |
[25] |
H. G. Li, Y. Y. Li and Z. L. Yang,
Asymptotics of the gradient of solutions to the perfect conductivity problem, Multiscale Model. Simul., 17 (2019), 899-925.
doi: 10.1137/18M1214329. |
[26] |
H. G. Li, F. Wang and L. J. Xu,
Characterization of electric fields between two spherical perfect conductors with general radii in 3D, J. Differ. Equ., 267 (2019), 6644-6690.
doi: 10.1016/j.jde.2019.07.007. |
[27] |
H. G. Li and L. J. Xu,
Optimal estimates for the perfect conductivity problem with inclusions close to the boundary, SIAM J. Math. Anal., 49 (2017), 3125-3142.
doi: 10.1137/16M1067858. |
[28] |
H. G. Li,
Asymptotics for the electric field concentration in the perfect conductivity problem, SIAM J. Math. Anal., 52 (2020), 3350-3375.
doi: 10.1137/19M1282623. |
[29] |
Y. Y. Li and L. Nirenberg,
Estimates for elliptic system from composite material, Commun. Pure Appl. Math., 56 (2003), 892-925.
doi: 10.1002/cpa.10079. |
[30] |
Y. Y. Li and M. Vogelius,
Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.
doi: 10.1007/s002050000082. |
[31] |
M. Lim and K. Yun,
Blow-up of electric fields between closely spaced spherical perfect conductors, Commun. Partial Differ. Equ., 34 (2009), 1287-1315.
doi: 10.1080/03605300903079579. |
[32] |
K. Yun,
Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape, SIAM J. Appl. Math., 67 (2007), 714-730.
doi: 10.1137/060648817. |
[33] |
K. Yun,
Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections, J. Math. Anal. Appl., 350 (2009), 306-312.
doi: 10.1016/j.jmaa.2008.09.057. |
[34] |
Z. W. Zhao and X. Hao,
Asymptotics for the concentrated field between closely located hard inclusions in all dimensions, Commun. Pure Appl. Anal., 20 (2021), 2379-2398.
doi: 10.3934/cpaa.2021086. |
show all references
References:
[1] |
H. Ammari, G. Ciraolo, H. Kang, H. Lee and K. Yun,
Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration. Mech. Anal., 208 (2013), 275-304.
doi: 10.1007/s00205-012-0590-8. |
[2] |
H. Ammari, H. Kang and M. Lim, Gradient estimates to the conductivity problem, Math. Ann. 332 (2005), 277-286.
doi: 10.1007/s00208-004-0626-y. |
[3] |
H. Ammari, H. Kang, H. Lee, J. Lee and M. Lim,
Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., 88 (2007), 307-324.
doi: 10.1016/j.matpur.2007.07.005. |
[4] |
I. Babuška, B. Andersson, P. Smith and K. Levin,
Damage analysis of fiber composites. I. Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., 172 (1999), 27-77.
doi: 10.1016/S0045-7825(98)00225-4. |
[5] |
B. Budiansky and G. F. Carrier,
High shear stresses in stiff fiber composites, J. App. Mech., 51 (1984), 733-735.
|
[6] |
E. Bao, Y. Y. Li and B. Yin,
Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., 193 (2009), 195-226.
doi: 10.1007/s00205-008-0159-8. |
[7] |
E. Bao, Y. Y. Li and B. Yin,
Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Commun. Partial Differ. Equ., 35 (2010), 1982-2006.
doi: 10.1080/03605300903564000. |
[8] |
E. Bonnetier and F. Triki, Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs, Multi-scale and high-contrast PDE: from modeling, to mathematical analysis, to inversion, Contemp. Math., 577, Amer. Math. Soc., Providence, RI, 2012, pp. 81–91.
doi: 10.1090/conm/577. |
[9] |
E. Bonnetier and F. Triki,
On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D, Arch. Ration. Mech. Anal., 209 (2013), 541-567.
doi: 10.1007/s00205-013-0636-6. |
[10] |
E. Bonnetier and M. Vogelius,
An elliptic regularity result for a composite medium with ``touching'' fibers of circular cross-section, SIAM J. Math. Anal., 31 (2000), 651-677.
doi: 10.1137/S0036141098333980. |
[11] |
V. M. Calo, Y. Efendiev and J. Galvis,
Asymptotic expansions for high-contrast elliptic equations, Math. Models Methods Appl. Sci., 24 (2014), 465-494.
doi: 10.1142/S0218202513500565. |
[12] |
G. Ciraolo and A. Sciammetta,
Gradient estimates for the perfect conductivity problem in anisotropic media, J. Math. Pures Appl., 127 (2019), 268-298.
doi: 10.1016/j.matpur.2018.09.006. |
[13] |
G. Ciraolo and A. Sciammetta,
Stress concentration for closely located inclusions in nonlinear perfect conductivity problems, J. Differ. Equ., 266 (2019), 6149-6178.
doi: 10.1016/j.jde.2018.10.041. |
[14] |
H. J. Dong and H. G. Li,
Optimal estimates for the conductivity problem by Green's function method, Arch. Ration. Mech. Anal., 231 (2019), 1427-1453.
doi: 10.1007/s00205-018-1301-x. |
[15] |
Y. Gorb and A. Novikov,
Blow-up of solutions to a $p$-Laplace equation, Multiscale Model. Simul., 10 (2012), 727-743.
doi: 10.1137/110857167. |
[16] |
Y. Gorb,
Singular behavior of electric field of high-contrast concentrated composites, Multiscale Model. Simul., 13 (2015), 1312-1326.
doi: 10.1137/140982076. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998. |
[18] |
J. B. Keller,
Stresses in narrow regions, Trans. ASME J. Appl. Mech., 60 (1993), 1054-1056.
|
[19] |
H. Kang, M. Lim and K. Yun,
Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities, J. Math. Pures Appl., 9 (2013), 234-249.
doi: 10.1016/j.matpur.2012.06.013. |
[20] |
H. Kang, M. Lim and K. Yun,
Characterization of the electric field concentration between two adjacent spherical perfect conductors, SIAM J. Appl. Math., 74 (2014), 125-146.
doi: 10.1137/130922434. |
[21] |
H. Kang, H. Lee and K. Yun,
Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions, Math. Ann., 363 (2015), 1281-1306.
doi: 10.1007/s00208-015-1203-2. |
[22] |
J. Kim and M. Lim,
Electric field concentration in the presence of an inclusion with eccentric core-shell geometry, Math. Ann., 373 (2019), 517-551.
doi: 10.1007/s00208-018-1688-6. |
[23] |
J. Lekner,
Electrostatics of two charged conducting spheres, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 2829-2848.
doi: 10.1098/rspa.2012.0133. |
[24] |
H. G. Li, Y. Y. Li, E. S. Bao and B. Yin, Derivative estimates of solutions of elliptic systems in narrow regions, Quart. Appl. Math. 72 (2014), 589–596.
doi: 10.1090/S0033-569X-2014-01339-0. |
[25] |
H. G. Li, Y. Y. Li and Z. L. Yang,
Asymptotics of the gradient of solutions to the perfect conductivity problem, Multiscale Model. Simul., 17 (2019), 899-925.
doi: 10.1137/18M1214329. |
[26] |
H. G. Li, F. Wang and L. J. Xu,
Characterization of electric fields between two spherical perfect conductors with general radii in 3D, J. Differ. Equ., 267 (2019), 6644-6690.
doi: 10.1016/j.jde.2019.07.007. |
[27] |
H. G. Li and L. J. Xu,
Optimal estimates for the perfect conductivity problem with inclusions close to the boundary, SIAM J. Math. Anal., 49 (2017), 3125-3142.
doi: 10.1137/16M1067858. |
[28] |
H. G. Li,
Asymptotics for the electric field concentration in the perfect conductivity problem, SIAM J. Math. Anal., 52 (2020), 3350-3375.
doi: 10.1137/19M1282623. |
[29] |
Y. Y. Li and L. Nirenberg,
Estimates for elliptic system from composite material, Commun. Pure Appl. Math., 56 (2003), 892-925.
doi: 10.1002/cpa.10079. |
[30] |
Y. Y. Li and M. Vogelius,
Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.
doi: 10.1007/s002050000082. |
[31] |
M. Lim and K. Yun,
Blow-up of electric fields between closely spaced spherical perfect conductors, Commun. Partial Differ. Equ., 34 (2009), 1287-1315.
doi: 10.1080/03605300903079579. |
[32] |
K. Yun,
Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape, SIAM J. Appl. Math., 67 (2007), 714-730.
doi: 10.1137/060648817. |
[33] |
K. Yun,
Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections, J. Math. Anal. Appl., 350 (2009), 306-312.
doi: 10.1016/j.jmaa.2008.09.057. |
[34] |
Z. W. Zhao and X. Hao,
Asymptotics for the concentrated field between closely located hard inclusions in all dimensions, Commun. Pure Appl. Anal., 20 (2021), 2379-2398.
doi: 10.3934/cpaa.2021086. |


[1] |
Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 |
[2] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[3] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[4] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[5] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[6] |
Pierpaolo Esposito, Maristella Petralla. Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1935-1957. doi: 10.3934/cpaa.2012.11.1935 |
[7] |
Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 |
[8] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[9] |
C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88 |
[10] |
Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020 |
[11] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[12] |
Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155 |
[13] |
W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655 |
[14] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[15] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[16] |
José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 |
[17] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[18] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[19] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[20] |
Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]