-
Previous Article
A non-convex non-smooth bi-level parameter learning for impulse and Gaussian noise mixture removing
- CPAA Home
- This Issue
-
Next Article
On analyticity up to the boundary for critical quasi-geostrophic equation in the half space
On Asymptotic Properties of Semi-relativistic Hartree Equation with combined Hartree-type nonlinearities
1. | Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China |
2. | Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China |
3. | School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China |
4. | Department of Mathematics, Lanzhou University of Technology, Lanzhou, 730000, China |
$ i\partial_t \psi = \sqrt{-\triangle+m^2}\, \psi+\beta(\frac{1}{|x|^\alpha}\ast |\psi|^2)\psi-(\frac{1}{|x|}\ast |\psi|^2)\psi\ \ \ \text{on $\mathbb{R}^3$.} $ |
$ 0<\alpha<1 $ |
$ \beta>0 $ |
$ \psi_\beta $ |
$ N = N_c $ |
$ N_c $ |
$ \psi_\beta $ |
$ \beta\rightarrow 0^+ $ |
$ \beta $ |
References:
[1] |
S. Cingolani and S. Secchi,
Ground states for the pseudo-relativistic Hartree equation with external potential, Proc. Roy. Soc. Edinb. A, 145 (2015), 73-90.
doi: 10.1017/S0308210513000450. |
[2] |
Y. Cho and T. Ozawa,
On the semi-relativistic Hartree type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[3] |
Y. Deng, Y. Guo and L. Lu,
On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions, Calc. Var. Partial Differ. Equ., 54 (2015), 99-118.
doi: 10.1007/s00526-014-0779-9. |
[4] |
A. Elgart and B. Schlein,
Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.
doi: 10.1002/cpa.20134. |
[5] |
B. Feng,
On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities, J. Evol. Equ., 18 (2018), 203-220.
doi: 10.1007/s00028-017-0397-z. |
[6] |
R. C. Fetecau, Y. Huang and T. Kolokolnikov,
Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.
doi: 10.1088/0951-7715/24/10/002. |
[7] |
J. Fröhlich, B. Lars, G. Jonsson and E. Lenzmann,
Boson stars as solitary waves, Commun. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[8] |
J. Fröhlich and E. Lenzmann,
Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[9] |
Y. Guo and R. Seiringer,
On the Mass concentration for Bose-Einstein condensation with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.
doi: 10.1007/s11005-013-0667-9. |
[10] |
Y. Guo and X. Zeng,
Ground states of pseudo-relativistic boson stars under the critical stellar mass, Ann. I. H. Poincaré, 34 (2017), 1611-1632.
doi: 10.1016/j.anihpc.2017.04.001. |
[11] |
Y. Guo, X. Zeng and H. Zhou,
Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Pioncaré, 33 (2016), 809-828.
doi: 10.1016/j.anihpc.2015.01.005. |
[12] |
S. Herr and E. Lenzmann,
The Boson star equation with initial data of low regularity, Nonlinear Anal., 97 (2014), 125-137.
doi: 10.1016/j.na.2013.11.023. |
[13] |
D. Holm and V. Putkaradze,
Formation of clumps and patches in selfaggregation of finite-size particles, Phys. D, 220 (2006), 183-196.
doi: 10.1016/j.physd.2006.07.010. |
[14] |
E. Lenzmann,
Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.
doi: 10.1007/s11040-007-9020-9. |
[15] |
E. Lenzmann,
Uniqueness of ground states for pseudo-relativistic Hartree equations, Anal. Partial Differ. Equ., 2 (2009), 1-27.
doi: 10.2140/apde.2009.2.1. |
[16] |
E. Lenzmann and M. Lewin,
On singularity formation for the $L^2$-critical Boson star equation, Nonlinearity, 24 (2011), 3515-3540.
doi: 10.1088/0951-7715/24/12/009. |
[17] |
E. H. Lieb and H. T. Yau,
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics., Commun. Math. Phys., 112 (1987), 147-174.
|
[18] |
E. H. Lieb and M. Loss, Analysis 2ed. Grad. Stud. Math., Amer. Math. Soc., 2001.
doi: 10.1090/gsm/014. |
[19] |
X. Luo,
Normalized standing waves for the Hartree equations, J. Differ. Equ., 267 (2019), 4493-4524.
doi: 10.1016/j.jde.2019.05.009. |
[20] |
A. Michelangeli and B. Schlein,
Dynamical collapse of boson stars, Commun. Math. Phys., 311 (2012), 645-687.
doi: 10.1007/s00220-011-1341-7. |
[21] |
D. T. Nguyen,
On Blow-up Profile of Ground States of Boson Stars with External Potential, J. Stat. Phys., 169 (2017), 395-422.
doi: 10.1007/s10955-017-1872-1. |
[22] |
F. Pusateri,
Modified Scattering for the Boson Star Equation, Commun. Math. Phys., 332 (2014), 1203-1234.
doi: 10.1007/s00220-014-2094-x. |
[23] |
Q. Shi and C. Peng,
Well-posedness for semirelativistic Schrödinger equation with power-type nonlinearity, Nonl. Anal., 178 (2019), 133-144.
doi: 10.1016/j.na.2018.07.012. |
[24] |
N. Soave,
Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 269 (2020), 6941-6987.
doi: 10.1016/j.jde.2020.05.016. |
[25] |
N. Soave,
Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 1-43.
doi: 10.1016/j.jfa.2020.108610. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
![]() ![]() |
[27] |
T. Tao, M. Visan and X. Zhang,
The nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equ., 32 (2007), 1281-1343.
doi: 10.1080/03605300701588805. |
[28] |
C. Topaz, A. Bertozzi and M. Lewis,
A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.
doi: 10.1007/s11538-006-9088-6. |
[29] |
Q. Wang and D. Zhao,
Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials, J. Differ. Equ., 262 (2017), 2684-2704.
doi: 10.1016/j.jde.2016.11.004. |
[30] |
J. Yang and J. Yang,
Existence and mass concentration of pseudo-relativistic Hartree equation, J. Math. Phys., 58 (2017), 1-22.
doi: 10.1063/1.4996576. |
[31] |
V. C. Zelati and M. Nolasco,
Ground states for pseudo-relativistic Hartree equations of critical type, Rev. Mat. Ibero., 29 (2013), 1421-1436.
doi: 10.4171/RMI/763. |
[32] |
X. Zeng and L. Zhang,
Normalized solutions for Schrödinger-Poisson-Slater equations with unbounded potentials, J. Math. Anal. Appl., 452 (2017), 47-61.
doi: 10.1016/j.jmaa.2017.02.053. |
show all references
References:
[1] |
S. Cingolani and S. Secchi,
Ground states for the pseudo-relativistic Hartree equation with external potential, Proc. Roy. Soc. Edinb. A, 145 (2015), 73-90.
doi: 10.1017/S0308210513000450. |
[2] |
Y. Cho and T. Ozawa,
On the semi-relativistic Hartree type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[3] |
Y. Deng, Y. Guo and L. Lu,
On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions, Calc. Var. Partial Differ. Equ., 54 (2015), 99-118.
doi: 10.1007/s00526-014-0779-9. |
[4] |
A. Elgart and B. Schlein,
Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60 (2007), 500-545.
doi: 10.1002/cpa.20134. |
[5] |
B. Feng,
On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities, J. Evol. Equ., 18 (2018), 203-220.
doi: 10.1007/s00028-017-0397-z. |
[6] |
R. C. Fetecau, Y. Huang and T. Kolokolnikov,
Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.
doi: 10.1088/0951-7715/24/10/002. |
[7] |
J. Fröhlich, B. Lars, G. Jonsson and E. Lenzmann,
Boson stars as solitary waves, Commun. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[8] |
J. Fröhlich and E. Lenzmann,
Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[9] |
Y. Guo and R. Seiringer,
On the Mass concentration for Bose-Einstein condensation with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.
doi: 10.1007/s11005-013-0667-9. |
[10] |
Y. Guo and X. Zeng,
Ground states of pseudo-relativistic boson stars under the critical stellar mass, Ann. I. H. Poincaré, 34 (2017), 1611-1632.
doi: 10.1016/j.anihpc.2017.04.001. |
[11] |
Y. Guo, X. Zeng and H. Zhou,
Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Pioncaré, 33 (2016), 809-828.
doi: 10.1016/j.anihpc.2015.01.005. |
[12] |
S. Herr and E. Lenzmann,
The Boson star equation with initial data of low regularity, Nonlinear Anal., 97 (2014), 125-137.
doi: 10.1016/j.na.2013.11.023. |
[13] |
D. Holm and V. Putkaradze,
Formation of clumps and patches in selfaggregation of finite-size particles, Phys. D, 220 (2006), 183-196.
doi: 10.1016/j.physd.2006.07.010. |
[14] |
E. Lenzmann,
Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64.
doi: 10.1007/s11040-007-9020-9. |
[15] |
E. Lenzmann,
Uniqueness of ground states for pseudo-relativistic Hartree equations, Anal. Partial Differ. Equ., 2 (2009), 1-27.
doi: 10.2140/apde.2009.2.1. |
[16] |
E. Lenzmann and M. Lewin,
On singularity formation for the $L^2$-critical Boson star equation, Nonlinearity, 24 (2011), 3515-3540.
doi: 10.1088/0951-7715/24/12/009. |
[17] |
E. H. Lieb and H. T. Yau,
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics., Commun. Math. Phys., 112 (1987), 147-174.
|
[18] |
E. H. Lieb and M. Loss, Analysis 2ed. Grad. Stud. Math., Amer. Math. Soc., 2001.
doi: 10.1090/gsm/014. |
[19] |
X. Luo,
Normalized standing waves for the Hartree equations, J. Differ. Equ., 267 (2019), 4493-4524.
doi: 10.1016/j.jde.2019.05.009. |
[20] |
A. Michelangeli and B. Schlein,
Dynamical collapse of boson stars, Commun. Math. Phys., 311 (2012), 645-687.
doi: 10.1007/s00220-011-1341-7. |
[21] |
D. T. Nguyen,
On Blow-up Profile of Ground States of Boson Stars with External Potential, J. Stat. Phys., 169 (2017), 395-422.
doi: 10.1007/s10955-017-1872-1. |
[22] |
F. Pusateri,
Modified Scattering for the Boson Star Equation, Commun. Math. Phys., 332 (2014), 1203-1234.
doi: 10.1007/s00220-014-2094-x. |
[23] |
Q. Shi and C. Peng,
Well-posedness for semirelativistic Schrödinger equation with power-type nonlinearity, Nonl. Anal., 178 (2019), 133-144.
doi: 10.1016/j.na.2018.07.012. |
[24] |
N. Soave,
Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ., 269 (2020), 6941-6987.
doi: 10.1016/j.jde.2020.05.016. |
[25] |
N. Soave,
Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 1-43.
doi: 10.1016/j.jfa.2020.108610. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
![]() ![]() |
[27] |
T. Tao, M. Visan and X. Zhang,
The nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equ., 32 (2007), 1281-1343.
doi: 10.1080/03605300701588805. |
[28] |
C. Topaz, A. Bertozzi and M. Lewis,
A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), 1601-1623.
doi: 10.1007/s11538-006-9088-6. |
[29] |
Q. Wang and D. Zhao,
Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials, J. Differ. Equ., 262 (2017), 2684-2704.
doi: 10.1016/j.jde.2016.11.004. |
[30] |
J. Yang and J. Yang,
Existence and mass concentration of pseudo-relativistic Hartree equation, J. Math. Phys., 58 (2017), 1-22.
doi: 10.1063/1.4996576. |
[31] |
V. C. Zelati and M. Nolasco,
Ground states for pseudo-relativistic Hartree equations of critical type, Rev. Mat. Ibero., 29 (2013), 1421-1436.
doi: 10.4171/RMI/763. |
[32] |
X. Zeng and L. Zhang,
Normalized solutions for Schrödinger-Poisson-Slater equations with unbounded potentials, J. Math. Anal. Appl., 452 (2017), 47-61.
doi: 10.1016/j.jmaa.2017.02.053. |
[1] |
Yonggeun Cho, Tohru Ozawa. On radial solutions of semi-relativistic Hartree equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 71-82. doi: 10.3934/dcdss.2008.1.71 |
[2] |
Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081 |
[3] |
Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047 |
[4] |
Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066 |
[5] |
Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261 |
[6] |
Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050 |
[7] |
Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188 |
[8] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
[9] |
Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214 |
[10] |
Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431 |
[11] |
Tarek Saanouni. Energy scattering for the focusing fractional generalized Hartree equation. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3637-3654. doi: 10.3934/cpaa.2021124 |
[12] |
Toshiyuki Suzuki. Energy methods for Hartree type equations with inverse-square potentials. Evolution Equations and Control Theory, 2013, 2 (3) : 531-542. doi: 10.3934/eect.2013.2.531 |
[13] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[14] |
Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure and Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237 |
[15] |
Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037 |
[16] |
Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209 |
[17] |
Yonggeun Cho, Tohru Ozawa, Hironobu Sasaki, Yongsun Shim. Remarks on the semirelativistic Hartree equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1277-1294. doi: 10.3934/dcds.2009.23.1277 |
[18] |
Antonio Iannizzotto, Kanishka Perera, Marco Squassina. Ground states for scalar field equations with anisotropic nonlocal nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5963-5976. doi: 10.3934/dcds.2015.35.5963 |
[19] |
Kiyeon Lee. Low regularity well-posedness of Hartree type Dirac equations in 2, 3-dimensions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3683-3702. doi: 10.3934/cpaa.2021126 |
[20] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]