
-
Previous Article
On spectral gaps of growth-fragmentation semigroups with mass loss or death
- CPAA Home
- This Issue
-
Next Article
On Asymptotic Properties of Semi-relativistic Hartree Equation with combined Hartree-type nonlinearities
A non-convex non-smooth bi-level parameter learning for impulse and Gaussian noise mixture removing
1. | EMI FST Béni-Mellal, Université Sultan Moulay Slimane, Maroc |
2. | Laboratoire SIE, Université IBN ZOHR Agadir |
This paper introduce a novel optimization procedure to reduce mixture of Gaussian and impulse noise from images. This technique exploits a non-convex PDE-constrained characterized by a fractional-order operator. The used non-convex term facilitated the impulse component approximation controlled by a spatial parameter $ \gamma $. A non-convex and non-smooth bi-level optimization framework with a modified projected gradient algorithm is then proposed in order to learn the parameter $ \gamma $. Denoising tests confirm that the non-convex term and learned parameter $ \gamma $ lead in general to an improved reconstruction when compared to results of convex norm and manual parameter $ \lambda $ choice.
References:
[1] |
L. Afraites, A. Hadri and A. Laghrib, A denoising model adapted for impulse and gaussian noises using a constrained-PDE, Inver. Prob., 36 (2020), 40 pp.
doi: 10.1088/1361-6420/ab5178. |
[2] |
J. P. Aubin,
Un théorème de compacité, Acad. Sci. Paris, 256 (1963), 5042-5044.
|
[3] |
E. M. Bednarczuk, L. I. Minchenko and K. E. Rutkowski,
On lipschitz-like continuity of a class of set-valued mappings, Optimization, 69 (2020), 2535-2549.
doi: 10.1080/02331934.2019.1696339. |
[4] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[5] |
H. C. Burger, B. Schölkopf and S. Harmeling, Removing noise from astronomical images using a pixel-specific noise model, in 2011 IEEE International Conference on Computational Photography (ICCP), (2011), 1–8. |
[6] |
L. Calatroni, J. C. De Los Reyes and C.-B. Schönlieb,
Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imag. Sci., 10 (2017), 1196-1233.
doi: 10.1137/16M1101684. |
[7] |
L. Calatroni and K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed gaussian and salt-and-pepper noise removal, Inver. Prob., 35 (2019), 37 pp.
doi: 10.1088/1361-6420/ab291a. |
[8] |
A. Chambolle and P. L. Lions,
Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188.
doi: 10.1007/s002110050258. |
[9] |
T. F. Chan and S. Esedoglu,
Aspects of total variation regularized $\ell_1$ function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837.
doi: 10.1137/040604297. |
[10] |
F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, Springer, London, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[11] |
F. Clarke, R. J. Stern and P. R. Wolenski,
Subgradient criteria for monotonicity, the lipschitz condition, and convexity, Canad. J. Math., 45 (1993), 1167-1183.
doi: 10.4153/CJM-1993-065-x. |
[12] |
J. C. De los Reyes, C. B. Schönlieb and T. Valkonen,
Bilevel parameter learning for higher-order total variation regularisation models, J. Math. Imag. Vis., 57 (2017), 1-25.
doi: 10.1007/s10851-016-0662-8. |
[13] |
S. Dempe, F. Harder, P. Mehlitz and G. Wachsmuth,
Solving inverse optimal control problems via value functions to global optimality, J. Glob. Optim., 74 (2019), 297-325.
doi: 10.1007/s10898-019-00758-1. |
[14] |
S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés and N. Kalashnykova, Bilevel Programming Problems, Energy Systems Theory, algorithms and applications to energy networks, Springer, Heidelberg, 2015.
doi: 10.1007/978-3-662-45827-3. |
[15] |
I. El Mourabit, M. El Rhabi, A. Hakim, A. Laghrib and E. Moreau,
A new denoising model for multi-frame super-resolution image reconstruction, Sign. Process., 132 (2017), 51-65.
|
[16] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Mult. Model. Simul., 7 (2009), 1005-1028.
doi: 10.1137/070698592. |
[17] |
F. Harder and G. Wachsmuth,
Optimality conditions for a class of inverse optimal control problems with partial differential equations, Optimization, 68 (2019), 615-643.
doi: 10.1080/02331934.2018.1495205. |
[18] |
M. Hintermüller, K. Papafitsoros, C. N. Rautenberg and H. Sun, Dualization and automatic distributed parameter selection of total generalized variation via bilevel optimization, 2020., |
[19] |
M. Hintermuller and A. Langer,
Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed $\ell^1$/$\ell^{2}$ data-fidelity in image processing, SIAM J. Imag. Sci., 6 (2013), 2134-2173.
doi: 10.1137/120894130. |
[20] |
F. Knoll, K. Bredies, T. Pock and R. Stollberger,
Second order total generalized variation (TGV) for MRI, Magnet. Resonan. Med., 65 (2011), 480-491.
|
[21] |
P. Konstantin and G. Mattias,
Necessary conditions for a class of bilevel optimal control problems exploiting the value function, Pure Appl. Funct. Anal., 1 (2016), 505-524.
doi: 10.1260/174830107783133851. |
[22] |
K. Kunisch and T. Pock,
A bilevel optimization approach for parameter learning in variational models, SIAM J. Imag. Sci., 6 (2013), 938-983.
doi: 10.1137/120882706. |
[23] |
A. Laghrib, A. Ben-Loghfyry, A. Hadri and A. Hakim,
A nonconvex fractional order variational model for multi-frame image super-resolution, Sign. Process., 67 (2018), 1-11.
|
[24] |
G. H. Lin, M. Xu and J. J. Ye,
On solving simple bilevel programs with a nonconvex lower level program, Math. Program., 144 (2014), 277-305.
doi: 10.1007/s10107-013-0633-4. |
[25] |
J. V. Manjón, J. Carbonell-Caballero, J. J. Lull, G. García-Martí, L. Martí-Bonmatí and M. Robles,
MRI denoising using non-local means, Med. Imag. Anal., 12 (2008), 514-523.
|
[26] |
P. Mehlitz, L. I. Minchenko and A. B. Zemkoho,
A note on partial calmness for bilevel optimization problems with linear structures at the lower level, Optim. Lett., 15 (2021), 1277-1291.
doi: 10.1007/s11590-020-01636-6. |
[27] |
A. Mitsos, P. Lemonidis and P. I. Barton,
Global solution of bilevel programs with a nonconvex inner program, J. Glob. Optim., 42 (2008), 475-513.
doi: 10.1007/s10898-007-9260-z. |
[28] |
M. Nikolova,
A variational approach to remove outliers and impulse noise, J. Math. Imag. Vis., 20 (2004), 99-120.
doi: 10.1023/B:JMIV.0000011920.58935.9c. |
[29] |
P. Ochs, R. Ranftl, T. Brox and T. Pock,
Techniques for gradient based bilevel optimization with nonsmooth lower level problems, J. Math. Imag. Vis., 56 (2016), 175-194.
doi: 10.1007/s10851-016-0663-7. |
[30] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[31] |
J. Simon,
Compact sets in the space $l^p (0, t; b)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[32] |
T. Valkonen, K. Bredies and F. Knoll,
Total generalized variation in diffusion tensor imaging, SIAM J. Imag. Sci., 6 (2013), 487-525.
doi: 10.1137/120867172. |
[33] |
J. J. Ye, D. L. Zhu and Q. J. Zhu,
Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM J. Optim., 7 (1997), 481-507.
doi: 10.1137/S1052623493257344. |
[34] |
J. Zhang and K. Chen,
A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J Imag. Sci., 8 (2015), 2487-2518.
doi: 10.1137/14097121X. |
[35] |
X. Zhang, M. Bai and M. K. Ng,
Nonconvex-tv based image restoration with impulse noise removal, SIAM J. Imag. Sci., 10 (2017), 1627-1667.
doi: 10.1137/16M1076034. |
[36] |
X. L. Zhao, F. Wang and M. K. Ng,
A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imag. Sci., 7 (2014), 456-475.
doi: 10.1137/13092472X. |
show all references
References:
[1] |
L. Afraites, A. Hadri and A. Laghrib, A denoising model adapted for impulse and gaussian noises using a constrained-PDE, Inver. Prob., 36 (2020), 40 pp.
doi: 10.1088/1361-6420/ab5178. |
[2] |
J. P. Aubin,
Un théorème de compacité, Acad. Sci. Paris, 256 (1963), 5042-5044.
|
[3] |
E. M. Bednarczuk, L. I. Minchenko and K. E. Rutkowski,
On lipschitz-like continuity of a class of set-valued mappings, Optimization, 69 (2020), 2535-2549.
doi: 10.1080/02331934.2019.1696339. |
[4] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[5] |
H. C. Burger, B. Schölkopf and S. Harmeling, Removing noise from astronomical images using a pixel-specific noise model, in 2011 IEEE International Conference on Computational Photography (ICCP), (2011), 1–8. |
[6] |
L. Calatroni, J. C. De Los Reyes and C.-B. Schönlieb,
Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imag. Sci., 10 (2017), 1196-1233.
doi: 10.1137/16M1101684. |
[7] |
L. Calatroni and K. Papafitsoros, Analysis and automatic parameter selection of a variational model for mixed gaussian and salt-and-pepper noise removal, Inver. Prob., 35 (2019), 37 pp.
doi: 10.1088/1361-6420/ab291a. |
[8] |
A. Chambolle and P. L. Lions,
Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188.
doi: 10.1007/s002110050258. |
[9] |
T. F. Chan and S. Esedoglu,
Aspects of total variation regularized $\ell_1$ function approximation, SIAM J. Appl. Math., 65 (2005), 1817-1837.
doi: 10.1137/040604297. |
[10] |
F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, Springer, London, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[11] |
F. Clarke, R. J. Stern and P. R. Wolenski,
Subgradient criteria for monotonicity, the lipschitz condition, and convexity, Canad. J. Math., 45 (1993), 1167-1183.
doi: 10.4153/CJM-1993-065-x. |
[12] |
J. C. De los Reyes, C. B. Schönlieb and T. Valkonen,
Bilevel parameter learning for higher-order total variation regularisation models, J. Math. Imag. Vis., 57 (2017), 1-25.
doi: 10.1007/s10851-016-0662-8. |
[13] |
S. Dempe, F. Harder, P. Mehlitz and G. Wachsmuth,
Solving inverse optimal control problems via value functions to global optimality, J. Glob. Optim., 74 (2019), 297-325.
doi: 10.1007/s10898-019-00758-1. |
[14] |
S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés and N. Kalashnykova, Bilevel Programming Problems, Energy Systems Theory, algorithms and applications to energy networks, Springer, Heidelberg, 2015.
doi: 10.1007/978-3-662-45827-3. |
[15] |
I. El Mourabit, M. El Rhabi, A. Hakim, A. Laghrib and E. Moreau,
A new denoising model for multi-frame super-resolution image reconstruction, Sign. Process., 132 (2017), 51-65.
|
[16] |
G. Gilboa and S. Osher,
Nonlocal operators with applications to image processing, Mult. Model. Simul., 7 (2009), 1005-1028.
doi: 10.1137/070698592. |
[17] |
F. Harder and G. Wachsmuth,
Optimality conditions for a class of inverse optimal control problems with partial differential equations, Optimization, 68 (2019), 615-643.
doi: 10.1080/02331934.2018.1495205. |
[18] |
M. Hintermüller, K. Papafitsoros, C. N. Rautenberg and H. Sun, Dualization and automatic distributed parameter selection of total generalized variation via bilevel optimization, 2020., |
[19] |
M. Hintermuller and A. Langer,
Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed $\ell^1$/$\ell^{2}$ data-fidelity in image processing, SIAM J. Imag. Sci., 6 (2013), 2134-2173.
doi: 10.1137/120894130. |
[20] |
F. Knoll, K. Bredies, T. Pock and R. Stollberger,
Second order total generalized variation (TGV) for MRI, Magnet. Resonan. Med., 65 (2011), 480-491.
|
[21] |
P. Konstantin and G. Mattias,
Necessary conditions for a class of bilevel optimal control problems exploiting the value function, Pure Appl. Funct. Anal., 1 (2016), 505-524.
doi: 10.1260/174830107783133851. |
[22] |
K. Kunisch and T. Pock,
A bilevel optimization approach for parameter learning in variational models, SIAM J. Imag. Sci., 6 (2013), 938-983.
doi: 10.1137/120882706. |
[23] |
A. Laghrib, A. Ben-Loghfyry, A. Hadri and A. Hakim,
A nonconvex fractional order variational model for multi-frame image super-resolution, Sign. Process., 67 (2018), 1-11.
|
[24] |
G. H. Lin, M. Xu and J. J. Ye,
On solving simple bilevel programs with a nonconvex lower level program, Math. Program., 144 (2014), 277-305.
doi: 10.1007/s10107-013-0633-4. |
[25] |
J. V. Manjón, J. Carbonell-Caballero, J. J. Lull, G. García-Martí, L. Martí-Bonmatí and M. Robles,
MRI denoising using non-local means, Med. Imag. Anal., 12 (2008), 514-523.
|
[26] |
P. Mehlitz, L. I. Minchenko and A. B. Zemkoho,
A note on partial calmness for bilevel optimization problems with linear structures at the lower level, Optim. Lett., 15 (2021), 1277-1291.
doi: 10.1007/s11590-020-01636-6. |
[27] |
A. Mitsos, P. Lemonidis and P. I. Barton,
Global solution of bilevel programs with a nonconvex inner program, J. Glob. Optim., 42 (2008), 475-513.
doi: 10.1007/s10898-007-9260-z. |
[28] |
M. Nikolova,
A variational approach to remove outliers and impulse noise, J. Math. Imag. Vis., 20 (2004), 99-120.
doi: 10.1023/B:JMIV.0000011920.58935.9c. |
[29] |
P. Ochs, R. Ranftl, T. Brox and T. Pock,
Techniques for gradient based bilevel optimization with nonsmooth lower level problems, J. Math. Imag. Vis., 56 (2016), 175-194.
doi: 10.1007/s10851-016-0663-7. |
[30] |
L. I. Rudin, S. Osher and E. Fatemi,
Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F. |
[31] |
J. Simon,
Compact sets in the space $l^p (0, t; b)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[32] |
T. Valkonen, K. Bredies and F. Knoll,
Total generalized variation in diffusion tensor imaging, SIAM J. Imag. Sci., 6 (2013), 487-525.
doi: 10.1137/120867172. |
[33] |
J. J. Ye, D. L. Zhu and Q. J. Zhu,
Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM J. Optim., 7 (1997), 481-507.
doi: 10.1137/S1052623493257344. |
[34] |
J. Zhang and K. Chen,
A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J Imag. Sci., 8 (2015), 2487-2518.
doi: 10.1137/14097121X. |
[35] |
X. Zhang, M. Bai and M. K. Ng,
Nonconvex-tv based image restoration with impulse noise removal, SIAM J. Imag. Sci., 10 (2017), 1627-1667.
doi: 10.1137/16M1076034. |
[36] |
X. L. Zhao, F. Wang and M. K. Ng,
A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imag. Sci., 7 (2014), 456-475.
doi: 10.1137/13092472X. |














Image | Criterion | Noise | denoising algorithms | ||||
Noisy | CCPDE [1] | Nonconvex-TV [35] | TV-IC [6] | Our Method | |||
Cameraman | PSNR | 24.84 | 31.26 | 31.02 | 31.96 | 32.44 | |
SSIM | 0.608 | 0.907 | 0.911 | 0.922 | 0.931 | ||
Tiger | PSNR | 21.27 | 26.77 | 26.82 | 27.06 | 27.13 | |
SSIM | 0.733 | 0.788 | 0.796 | 0.802 | 0.800 | ||
Hot air balloon | PSNR | 15.80 | 24.86 | 24.91 | 25.06 | 25.06 | |
SSIM | 0.433 | 0.605 | 0.614 | 0.617 | 0.622 | ||
Bridge | PSNR | 14.80 | 23.46 | 23.92 | 23.96 | 24.26 | |
SSIM | 0.333 | 0.555 | 0.564 | 0.547 | 0.592 | ||
Bird | PSNR | 18.63 | 26.56 | 26.88 | 26.77 | 26.98 | |
SSIM | 0.543 | 0.745 | 0.766 | 0.777 | 0.782 | ||
Lena | PSNR | 10.78 | 20.66 | 21.18 | 21.08 | 21.52 | |
SSIM | 0.303 | 0.555 | 0.563 | 0.577 | 0.598 | ||
Penguin | PSNR | 19.77 | 26.66 | 26.58 | 26.88 | 27.02 | |
SSIM | 0.483 | 0.685 | 0.693 | 0.704 | 0.715 | ||
Lion | PSNR | 16.42 | 24.86 | 25.14 | 25.48 | 25.92 | |
SSIM | 0.489 | 0.695 | 0.702 | 0.704 | 0.733 | ||
Bear | PSNR | 14.66 | 24.68 | 25.12 | 25.22 | 25.42 | |
SSIM | 0.433 | 0.555 | 0.566 | 0.583 | 0.608 | ||
Woman | PSNR | 13.67 | 18.55 | 24.88 | 24.95 | 25.07 | |
SSIM | 0.417 | 0.536 | 0.552 | 0.577 | 0.582 |
Image | Criterion | Noise | denoising algorithms | ||||
Noisy | CCPDE [1] | Nonconvex-TV [35] | TV-IC [6] | Our Method | |||
Cameraman | PSNR | 24.84 | 31.26 | 31.02 | 31.96 | 32.44 | |
SSIM | 0.608 | 0.907 | 0.911 | 0.922 | 0.931 | ||
Tiger | PSNR | 21.27 | 26.77 | 26.82 | 27.06 | 27.13 | |
SSIM | 0.733 | 0.788 | 0.796 | 0.802 | 0.800 | ||
Hot air balloon | PSNR | 15.80 | 24.86 | 24.91 | 25.06 | 25.06 | |
SSIM | 0.433 | 0.605 | 0.614 | 0.617 | 0.622 | ||
Bridge | PSNR | 14.80 | 23.46 | 23.92 | 23.96 | 24.26 | |
SSIM | 0.333 | 0.555 | 0.564 | 0.547 | 0.592 | ||
Bird | PSNR | 18.63 | 26.56 | 26.88 | 26.77 | 26.98 | |
SSIM | 0.543 | 0.745 | 0.766 | 0.777 | 0.782 | ||
Lena | PSNR | 10.78 | 20.66 | 21.18 | 21.08 | 21.52 | |
SSIM | 0.303 | 0.555 | 0.563 | 0.577 | 0.598 | ||
Penguin | PSNR | 19.77 | 26.66 | 26.58 | 26.88 | 27.02 | |
SSIM | 0.483 | 0.685 | 0.693 | 0.704 | 0.715 | ||
Lion | PSNR | 16.42 | 24.86 | 25.14 | 25.48 | 25.92 | |
SSIM | 0.489 | 0.695 | 0.702 | 0.704 | 0.733 | ||
Bear | PSNR | 14.66 | 24.68 | 25.12 | 25.22 | 25.42 | |
SSIM | 0.433 | 0.555 | 0.566 | 0.583 | 0.608 | ||
Woman | PSNR | 13.67 | 18.55 | 24.88 | 24.95 | 25.07 | |
SSIM | 0.417 | 0.536 | 0.552 | 0.577 | 0.582 |
Image | denoising algorithms | |||
CCPDE [1] | Nonconvex-TV [35] | TV-IC [6] | Our Method | |
Cameraman | 44.24 | 21.66 | 35.99 | 52.64 |
Tiger | 61.77 | 26.82 | 46.11 | 77.78 |
Hot air balloon | 55.90 | 24.61 | 45.16 | 65.56 |
Bridge | 54.80 | 25.56 | 43.99 | 64.36 |
Bird | 68.33 | 28.96 | 46.07 | 76.38 |
Lena | 47.73 | 22.26 | 31.88 | 61.22 |
Penguin | 69.70 | 26.56 | 53.48 | 77.22 |
Lion | 86.44 | 30.06 | 55.66 | 95.93 |
Bear | 64.36 | 28.18 | 55.72 | 75.88 |
Woman | 63.66 | 30.15 | 44.25 | 75.67 |
Image | denoising algorithms | |||
CCPDE [1] | Nonconvex-TV [35] | TV-IC [6] | Our Method | |
Cameraman | 44.24 | 21.66 | 35.99 | 52.64 |
Tiger | 61.77 | 26.82 | 46.11 | 77.78 |
Hot air balloon | 55.90 | 24.61 | 45.16 | 65.56 |
Bridge | 54.80 | 25.56 | 43.99 | 64.36 |
Bird | 68.33 | 28.96 | 46.07 | 76.38 |
Lena | 47.73 | 22.26 | 31.88 | 61.22 |
Penguin | 69.70 | 26.56 | 53.48 | 77.22 |
Lion | 86.44 | 30.06 | 55.66 | 95.93 |
Bear | 64.36 | 28.18 | 55.72 | 75.88 |
Woman | 63.66 | 30.15 | 44.25 | 75.67 |
[1] |
Lekbir Afraites, Aissam Hadri, Amine Laghrib, Mourad Nachaoui. A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification. Inverse Problems and Imaging, 2022, 16 (4) : 827-870. doi: 10.3934/ipi.2022001 |
[2] |
Amine Laghrib, Lekbir Afraites, Aissam Hadri, Mourad Nachaoui. A non-convex PDE-constrained denoising model for impulse and Gaussian noise mixture reduction. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022031 |
[3] |
Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial and Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134 |
[4] |
Xiaowei Chen, Qianlong Liu, Dan A. Ralescu. A bi-level optimization model for the asset-liability management of insurance companies. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022074 |
[5] |
Yoon Mo Jung, Taeuk Jeong, Sangwoon Yun. Non-convex TV denoising corrupted by impulse noise. Inverse Problems and Imaging, 2017, 11 (4) : 689-702. doi: 10.3934/ipi.2017032 |
[6] |
Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004 |
[7] |
Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051 |
[8] |
Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022 |
[9] |
Zhe Zhang, Jiuping Xu. Bi-level multiple mode resource-constrained project scheduling problems under hybrid uncertainty. Journal of Industrial and Management Optimization, 2016, 12 (2) : 565-593. doi: 10.3934/jimo.2016.12.565 |
[10] |
Gayatri Pany, Ram N. Mohapatra. A study on vector variational-like inequalities using convexificators and application to its bi-level form. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021161 |
[11] |
Yufeng Zhou, Bin Zheng, Jiafu Su, Yufeng Li. The joint location-transportation model based on grey bi-level programming for early post-earthquake relief. Journal of Industrial and Management Optimization, 2022, 18 (1) : 45-73. doi: 10.3934/jimo.2020142 |
[12] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial and Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[13] |
Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047 |
[14] |
Pavel Krejčí, Giselle Antunes Monteiro, Vincenzo Recupero. Non-convex sweeping processes in the space of regulated functions. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022087 |
[15] |
C. M. Elliott, B. Gawron, S. Maier-Paape, E. S. Van Vleck. Discrete dynamics for convex and non-convex smoothing functionals in PDE based image restoration. Communications on Pure and Applied Analysis, 2006, 5 (1) : 181-200. doi: 10.3934/cpaa.2006.5.181 |
[16] |
Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure and Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835 |
[17] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems and Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[18] |
Asadollah Aghajani. Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3521-3530. doi: 10.3934/dcds.2017150 |
[19] |
. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks and Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127 |
[20] |
Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]