-
Previous Article
Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems
- CPAA Home
- This Issue
-
Next Article
Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator
On an exponentially decaying diffusive chemotaxis system with indirect signals
a. | College of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China |
b. | School of Mathematics and Statistics, Yunnan University, Kunming 650091, China |
$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} &u_t = \nabla\cdot(D(u)\nabla u)-\nabla\cdot(S(u)\nabla v), &(x,t)\in \Omega\times (0,\infty), \\ &v_t = \Delta v+h(v,w), &(x,t)\in \Omega\times (0,\infty), \\ &w_t = \Delta w- w+u, &(x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $ |
$ \Omega\subset \mathbb{R}^{n} $ |
$ n\geq2 $ |
$ D $ |
$ S $ |
$ K_{1}e^{-\beta^{-}s}\leq D(s) \leq K_{2}e^{-\beta^{+}s} \;\;\;{\rm{and}}\;\;\;\frac{D(s)}{S(s)}\geq K_{3}s^{-\alpha}+\gamma, $ |
$ \beta^{-}\geq \beta^{+}>0 $ |
$ K_{1},K_{2},K_{3}>0 $ |
$ \alpha,\gamma\geq0 $ |
$ h(v,w) = -v+w $ |
$ \alpha\in[0,\frac{2}{n}) $ |
$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $ |
$ \gamma>1 $ |
$ u_{0} $ |
$ (u,v,w) $ |
$ (\overline{u_{0}},\overline{u_{0}},\overline{u_{0}}) $ |
$ L^{\infty} $ |
$ t\rightarrow \infty $ |
$ \overline{u_{0}} = \frac{1}{|\Omega|}\int_{\Omega}u_{0}(x)dx $ |
$ h(v,w) = -vw $ |
$ \alpha\geq0 $ |
$ \gamma>0 $ |
$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $ |
$ n = 2 $ |
$ \alpha\geq0 $ |
$ \gamma\geq0 $ |
$ \beta^{-}\geq \beta^{+}>\varepsilon $ |
$ \varepsilon>0 $ |
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 9 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
T. Cie$\acute{s}$lak and M. Winkler,
Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonl. Anal. Real World Appl., 35 (2017), 1-19.
doi: 10.1016/j.nonrwa.2016.10.002. |
[3] |
T. Cie$\acute{s}$lak and M. Winkler,
Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonl. Anal., 159 (2017), 129-144.
doi: 10.1016/j.na.2016.04.013. |
[4] |
M. Ding and W. Wang,
Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4665-4684.
doi: 10.3934/dcdsb.2018328. |
[5] |
M. Ding and M. Winkler, Small-density solutions in Keller-Segel systems involving rapidly decaying diffusivities, Nonlinear Differ. Equ. Appl., 28 (2021), 18 pp.
doi: 10.1007/s00030-021-00709-4. |
[6] |
M. Fuest,
Analysis of a chemotaxis model with indirect signal absorption, J. Differ. Equ., 267 (2019), 4778-4806.
doi: 10.1016/j.jde.2019.05.015. |
[7] |
T. Hillen and K. J. Painter,
A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2019), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[8] |
D. Horstmann,
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. DMV, 105 (2003), 103-165.
|
[9] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[10] |
B. Hu and Y. Tao,
To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[11] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theo. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[12] |
B. Liu and M. Dong,
Global solutions in a quasilinear parabolic-parabolic chemotaxis system with decaying diffusivity and consumption of chemoattractant, J. Math. Anal. Appl., 467 (2018), 32-44.
doi: 10.1016/j.jmaa.2018.06.001. |
[13] |
L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 20 (1966), 733–737.
doi: http://eudml.org/doc/83404. |
[14] |
M. M. Porzio and V. Vespri,
H$\ddot{o}$lder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[15] |
S. Strohm, R. C. Tyson and J. A. Powell,
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.
doi: 10.1007/s11538-013-9868-8. |
[16] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[17] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[18] |
L. Wang, X. Hu, P. Zheng and L. Li,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, Comp. Math. Appl., 74 (2017), 2444-2448.
doi: 10.1016/j.camwa.2017.07.023. |
[19] |
M. Winkler,
A critical exponent in a degenerate parabolic equation, Math. Meth. Appl. Sci., 25 (2002), 911-925.
doi: 10.1002/mma.319. |
[20] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[21] |
M. Winkler,
Global existence and slow grow-up in a qualinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764.
doi: 10.1088/1361-6544/aa565b. |
[22] |
M. Winkler,
Global large-data solution in a chemotaxis-(Navier)-Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37 (2012), 319-352.
doi: 10.1080/03605302.2011.591865. |
[23] |
M. Winkler,
Does a 'volume-filling' effect always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.
doi: 10.1002/mma.1146. |
show all references
References:
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler,
Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 9 (2015), 1663-1763.
doi: 10.1142/S021820251550044X. |
[2] |
T. Cie$\acute{s}$lak and M. Winkler,
Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonl. Anal. Real World Appl., 35 (2017), 1-19.
doi: 10.1016/j.nonrwa.2016.10.002. |
[3] |
T. Cie$\acute{s}$lak and M. Winkler,
Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonl. Anal., 159 (2017), 129-144.
doi: 10.1016/j.na.2016.04.013. |
[4] |
M. Ding and W. Wang,
Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4665-4684.
doi: 10.3934/dcdsb.2018328. |
[5] |
M. Ding and M. Winkler, Small-density solutions in Keller-Segel systems involving rapidly decaying diffusivities, Nonlinear Differ. Equ. Appl., 28 (2021), 18 pp.
doi: 10.1007/s00030-021-00709-4. |
[6] |
M. Fuest,
Analysis of a chemotaxis model with indirect signal absorption, J. Differ. Equ., 267 (2019), 4778-4806.
doi: 10.1016/j.jde.2019.05.015. |
[7] |
T. Hillen and K. J. Painter,
A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2019), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[8] |
D. Horstmann,
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. DMV, 105 (2003), 103-165.
|
[9] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[10] |
B. Hu and Y. Tao,
To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[11] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theo. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[12] |
B. Liu and M. Dong,
Global solutions in a quasilinear parabolic-parabolic chemotaxis system with decaying diffusivity and consumption of chemoattractant, J. Math. Anal. Appl., 467 (2018), 32-44.
doi: 10.1016/j.jmaa.2018.06.001. |
[13] |
L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 20 (1966), 733–737.
doi: http://eudml.org/doc/83404. |
[14] |
M. M. Porzio and V. Vespri,
H$\ddot{o}$lder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[15] |
S. Strohm, R. C. Tyson and J. A. Powell,
Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.
doi: 10.1007/s11538-013-9868-8. |
[16] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[17] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[18] |
L. Wang, X. Hu, P. Zheng and L. Li,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, Comp. Math. Appl., 74 (2017), 2444-2448.
doi: 10.1016/j.camwa.2017.07.023. |
[19] |
M. Winkler,
A critical exponent in a degenerate parabolic equation, Math. Meth. Appl. Sci., 25 (2002), 911-925.
doi: 10.1002/mma.319. |
[20] |
M. Winkler,
Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[21] |
M. Winkler,
Global existence and slow grow-up in a qualinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764.
doi: 10.1088/1361-6544/aa565b. |
[22] |
M. Winkler,
Global large-data solution in a chemotaxis-(Navier)-Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ., 37 (2012), 319-352.
doi: 10.1080/03605302.2011.591865. |
[23] |
M. Winkler,
Does a 'volume-filling' effect always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.
doi: 10.1002/mma.1146. |
[1] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[2] |
Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic and Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013 |
[3] |
Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic and Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481 |
[4] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure and Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[5] |
Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583 |
[6] |
Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821 |
[7] |
Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009 |
[8] |
Jishan Fan, Fei Jiang. Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions. Communications on Pure and Applied Analysis, 2016, 15 (1) : 73-90. doi: 10.3934/cpaa.2016.15.73 |
[9] |
Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211 |
[10] |
Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096 |
[11] |
Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284 |
[12] |
Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093 |
[13] |
Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102 |
[14] |
Colette Guillopé, Samer Israwi, Raafat Talhouk. Large-time existence for one-dimensional Green-Naghdi equations with vorticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2947-2974. doi: 10.3934/dcdss.2021040 |
[15] |
Qiwei Wu. Large-time behavior of solutions to the bipolar quantum Euler-Poisson system with critical time-dependent over-damping. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022008 |
[16] |
Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045 |
[17] |
Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 |
[18] |
Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic and Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034 |
[19] |
Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15 |
[20] |
Xuewei Ju, Desheng Li. Global synchronising behavior of evolution equations with exponentially growing nonautonomous forcing. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1921-1944. doi: 10.3934/cpaa.2018091 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]