
-
Previous Article
Exponential attractors for two-dimensional nonlocal diffusion lattice systems with delay
- CPAA Home
- This Issue
-
Next Article
Formation of singularities of solutions to the Cauchy problem for semilinear Moore-Gibson-Thompson equations
The number of limit cycles from the perturbation of a quadratic isochronous system with two switching lines
1. | Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China |
2. | Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China |
In this paper, we give an upper bound (for $ n\geq3 $) and the least upper bound (for $ n = 1,2 $) of the number of limit cycles bifurcated from period annuli of a quadratic isochronous system under the piecewise polynomial perturbations of degree $ n $, respectively. The results improve the conclusions in [
References:
[1] |
X. Chen and M. Han, A linear estimate of the number of limit cycles for a piecewise smooth near-hamiltonian system, Qual. Theory Dynam. Syst., 19 (2020), 19 pp.
doi: 10.1007/s12346-020-00398-x. |
[2] |
C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser Verlag, Basel-Boston-Berlin, 2007. |
[3] |
J. Giné, J. Llibre, K. Wu and X. Zhang,
Averaging methods of arbitrary order, periodic solutions and integrability, J. Differ. Equ., 260 (2016), 4130-4156.
doi: 10.1016/j.jde.2015.11.005. |
[4] |
M. Han,
On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 7 (2017), 788-794.
doi: 10.11948/2017049. |
[5] |
M. Han and L. Sheng,
Bifurcation of limit cycles in piecewise smooth systems via melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.
doi: 10.11948/2015061. |
[6] |
M. Han and J. Yang,
The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 3 (2021), 13-34.
doi: 10.12150/jnma.2021.13. |
[7] |
M. Han and W. Zhang,
On hopf bifurcation in non-smooth planar systems, J. Differ. Equ., 248 (2010), 2399-2416.
doi: 10.1016/j.jde.2009.10.002. |
[8] |
E. Horozov and I. D. Iliev,
Linear estimate for the number of zeros of abelian integrals with cubic hamiltonians, Nonlinearity, 11 (1998), 1521-1537.
doi: 10.1088/0951-7715/11/6/006. |
[9] |
N. Hu and Z. Du,
Bifurcation of periodic orbits emanated from a vertex in discontinuous planar systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3436-3448.
doi: 10.1016/j.cnsns.2013.05.012. |
[10] |
S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience, New York, 1966. |
[11] |
A. Ke and M. Han, Limit cycles from perturbing a piecewise smooth system with a center and a homoclinic loop, Int. J. Bifurcat. Chaos, 31 (2021), 15 PP.
doi: 10.1142/S0218127421501595. |
[12] |
F. Liang, M. Han and V. G. Romanovski,
Bifurcation of limit cycles by perturbing a piecewise linear hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.
doi: 10.1016/j.na.2012.03.022. |
[13] |
S. Liu, M. Han and J. Li,
Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differ. Equ., 275 (2021), 204-233.
doi: 10.1016/j.jde.2020.11.040. |
[14] |
X. Liu and M. Han,
Bifurcation of limit cycles by perturbing piecewise hamiltonian systems, Int. J. Bifurcat. Chaos, 20 (2010), 1379-1390.
doi: 10.1142/S021812741002654X. |
[15] |
W. Loud,
Behavior of the period of solutions of certain plane autonomous systems near centers, Contr. Differ. Equ., 3 (1964), 21-36.
doi: 10.1017/s002555720004852x. |
[16] |
F. Mañosas and J. Villadelprat,
Bounding the number of zeros of certain abelian integrals, J. Differ. Equ., 251 (2011), 1656-1669.
doi: 10.1016/j.jde.2011.05.026. |
[17] |
H. Tian and M. Han,
Limit cycle bifurcations of piecewise smooth near-hamiltonian systems with a switching curve, Discret. Contin. Dynam. Syst. Series B, 26 (2021), 5581-5599.
doi: 10.3934/dcdsb.2020368. |
[18] |
Y. Wang, M. Han and D. Constantinescu,
On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos, Solitons and Fractals, 83 (2016), 158-177.
doi: 10.1016/j.chaos.2015.11.041. |
[19] |
J. Yang, Picard-fuchs equation applied to quadratic isochronous systems with two switching lines, Int. J. Bifurcat. Chaos, 30 (2020), 17 pp.
doi: 10.1142/S021812742050042X. |
[20] |
J. Yang and L. Zhao,
Bounding the number of limit cycles of discontinuous differential systems by using picard-fuchs equations, J. Differ. Equ., 264 (2018), 5734-5757.
doi: 10.1016/j.jde.2018.01.017. |
show all references
References:
[1] |
X. Chen and M. Han, A linear estimate of the number of limit cycles for a piecewise smooth near-hamiltonian system, Qual. Theory Dynam. Syst., 19 (2020), 19 pp.
doi: 10.1007/s12346-020-00398-x. |
[2] |
C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser Verlag, Basel-Boston-Berlin, 2007. |
[3] |
J. Giné, J. Llibre, K. Wu and X. Zhang,
Averaging methods of arbitrary order, periodic solutions and integrability, J. Differ. Equ., 260 (2016), 4130-4156.
doi: 10.1016/j.jde.2015.11.005. |
[4] |
M. Han,
On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, J. Appl. Anal. Comput., 7 (2017), 788-794.
doi: 10.11948/2017049. |
[5] |
M. Han and L. Sheng,
Bifurcation of limit cycles in piecewise smooth systems via melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.
doi: 10.11948/2015061. |
[6] |
M. Han and J. Yang,
The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 3 (2021), 13-34.
doi: 10.12150/jnma.2021.13. |
[7] |
M. Han and W. Zhang,
On hopf bifurcation in non-smooth planar systems, J. Differ. Equ., 248 (2010), 2399-2416.
doi: 10.1016/j.jde.2009.10.002. |
[8] |
E. Horozov and I. D. Iliev,
Linear estimate for the number of zeros of abelian integrals with cubic hamiltonians, Nonlinearity, 11 (1998), 1521-1537.
doi: 10.1088/0951-7715/11/6/006. |
[9] |
N. Hu and Z. Du,
Bifurcation of periodic orbits emanated from a vertex in discontinuous planar systems, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 3436-3448.
doi: 10.1016/j.cnsns.2013.05.012. |
[10] |
S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience, New York, 1966. |
[11] |
A. Ke and M. Han, Limit cycles from perturbing a piecewise smooth system with a center and a homoclinic loop, Int. J. Bifurcat. Chaos, 31 (2021), 15 PP.
doi: 10.1142/S0218127421501595. |
[12] |
F. Liang, M. Han and V. G. Romanovski,
Bifurcation of limit cycles by perturbing a piecewise linear hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.
doi: 10.1016/j.na.2012.03.022. |
[13] |
S. Liu, M. Han and J. Li,
Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differ. Equ., 275 (2021), 204-233.
doi: 10.1016/j.jde.2020.11.040. |
[14] |
X. Liu and M. Han,
Bifurcation of limit cycles by perturbing piecewise hamiltonian systems, Int. J. Bifurcat. Chaos, 20 (2010), 1379-1390.
doi: 10.1142/S021812741002654X. |
[15] |
W. Loud,
Behavior of the period of solutions of certain plane autonomous systems near centers, Contr. Differ. Equ., 3 (1964), 21-36.
doi: 10.1017/s002555720004852x. |
[16] |
F. Mañosas and J. Villadelprat,
Bounding the number of zeros of certain abelian integrals, J. Differ. Equ., 251 (2011), 1656-1669.
doi: 10.1016/j.jde.2011.05.026. |
[17] |
H. Tian and M. Han,
Limit cycle bifurcations of piecewise smooth near-hamiltonian systems with a switching curve, Discret. Contin. Dynam. Syst. Series B, 26 (2021), 5581-5599.
doi: 10.3934/dcdsb.2020368. |
[18] |
Y. Wang, M. Han and D. Constantinescu,
On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos, Solitons and Fractals, 83 (2016), 158-177.
doi: 10.1016/j.chaos.2015.11.041. |
[19] |
J. Yang, Picard-fuchs equation applied to quadratic isochronous systems with two switching lines, Int. J. Bifurcat. Chaos, 30 (2020), 17 pp.
doi: 10.1142/S021812742050042X. |
[20] |
J. Yang and L. Zhao,
Bounding the number of limit cycles of discontinuous differential systems by using picard-fuchs equations, J. Differ. Equ., 264 (2018), 5734-5757.
doi: 10.1016/j.jde.2018.01.017. |


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
new | 7, 4 (exact) |
9, 5 (exact) |
15, 9 | 20, 11 | 25, 13 | 30, 16 | 35, 19 | 40, 22 | 45, 25 | 50, 28 | 55, 31 | 60, 33 |
old | 28, 17 | 37, 19 | 46, 21 | 55, 23 | 64, 25 | 73, 27 | 82, 29 | 91, 31 | 100, 33 | 109, 35 | 118, 37 | 127, 39 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
new | 7, 4 (exact) |
9, 5 (exact) |
15, 9 | 20, 11 | 25, 13 | 30, 16 | 35, 19 | 40, 22 | 45, 25 | 50, 28 | 55, 31 | 60, 33 |
old | 28, 17 | 37, 19 | 46, 21 | 55, 23 | 64, 25 | 73, 27 | 82, 29 | 91, 31 | 100, 33 | 109, 35 | 118, 37 | 127, 39 |
[1] |
Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021319 |
[2] |
Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133 |
[3] |
Xiaolei Zhang, Yanqin Xiong, Yi Zhang. The number of limit cycles by perturbing a piecewise linear system with three zones. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1833-1855. doi: 10.3934/cpaa.2022049 |
[4] |
Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021264 |
[5] |
Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211 |
[6] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[7] |
Hong Li. Bifurcation of limit cycles from a Li$ \acute{E} $nard system with asymmetric figure eight-loop case. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022033 |
[8] |
Yunming Zhou, Desheng Shang, Tonghua Zhang. Seventeen limit cycles bifurcations of a fifth system. Conference Publications, 2007, 2007 (Special) : 1070-1081. doi: 10.3934/proc.2007.2007.1070 |
[9] |
Maoan Han, Yuhai Wu, Ping Bi. A new cubic system having eleven limit cycles. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 675-686. doi: 10.3934/dcds.2005.12.675 |
[10] |
Min Li, Maoan Han. On the number of limit cycles of a quartic polynomial system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3167-3181. doi: 10.3934/dcdss.2020337 |
[11] |
Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189 |
[12] |
Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136 |
[13] |
Junmin Yang, Maoan Han. On the number of limit cycles of a cubic Near-Hamiltonian system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 827-840. doi: 10.3934/dcds.2009.24.827 |
[14] |
Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure and Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583 |
[15] |
Maoan Han, Tonghua Zhang. Some bifurcation methods of finding limit cycles. Mathematical Biosciences & Engineering, 2006, 3 (1) : 67-77. doi: 10.3934/mbe.2006.3.67 |
[16] |
Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1835-1858. doi: 10.3934/dcdsb.2020005 |
[17] |
Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215 |
[18] |
Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147 |
[19] |
Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236 |
[20] |
Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]