
-
Previous Article
Stability analysis of the boundary value problem modelling a two-layer ocean
- CPAA Home
- This Issue
-
Next Article
Particle paths in equatorial flows
On three-dimensional free surface water flows with constant vorticity
Oskar-Morgenstern Platz 1, 1090 Vienna, Austria |
We present a survey of recent results on gravity water flows satisfying the three-dimensional water wave problem with constant (non-vanishing) vorticity vector. The main focus is to show that a gravity water flow with constant non-vanishing vorticity has a two-dimensional character in spite of satisfying the three-dimensional water wave equations. More precisely, the flow does not change in one of the two horizontal directions. Passing to a rotating frame, and introducing thus geophysical effects (in the form of Coriolis acceleration) into the governing equations, the two-dimensional character of the flow remains in place. However, the two-dimensionality of the flow manifests now in a horizontal plane. Adding also centripetal terms into the equations further simplifies the flow (under the assumption of constant vorticity vector): the velocity field vanishes, but, however, the pressure function is a quadratic polynomial in the horizontal and vertical variables, and, surprisingly, the surface is non-flat.
References:
[1] |
A. Aleman and A. Constantin,
On the decrease of kinetic energy with depth in wave-current interactions, Math. Ann., 378 (2020), 853-872.
doi: 10.1007/s00208-019-01910-8. |
[2] |
B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in Nonlinear Wave Interactions in Fluids, ASME, New York, 1987. |
[3] |
D. Byrne, H. Xia and M. Shats, Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid, Phys. Fluids, 23 (2011), 8 pp. |
[4] |
A. Constantin,
On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[5] |
A. Constantin,
Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.
doi: 10.1088/0305-4470/34/45/311. |
[6] |
A. Constantin and J. Escher,
Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.
doi: 10.1017/S0022112003006773. |
[7] |
A. Constantin and W. Strauss,
Exact steady periodic water waves with vorticity, Commun. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046. |
[8] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[9] |
A. Constantin, M. Ehrnstr'̀om and E. Wahlén,
Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.
doi: 10.1215/S0012-7094-07-14034-1. |
[10] |
A. Constantin and J. Escher,
Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[11] |
A. Constantin and E. Kartashova, Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Euro. Lett., 86 (2009), 6 pp.
doi: 10.1209/0295-5075/86/29001. |
[12] |
A. Constantin and J. Escher,
Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12. |
[13] |
A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, in CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971873. |
[14] |
A. Constantin,
Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 30 (2011), 12-16.
doi: 10.1016/j.euromechflu.2010.09.008. |
[15] |
A. Constantin and E. Varvaruca,
Steady periodic water waves with constant vorticity: regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67.
doi: 10.1007/s00205-010-0314-x. |
[16] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), 4 pp.
doi: 10.1029/2012GL051169. |
[17] |
A. Constantin and P. Germain,
Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
|
[18] |
A. Constantin and R. I. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Phys. Fluids, 27 (2015), 8 pp.
doi: 10.1063/1.4929457. |
[19] |
A. Constantin, W. Strauss and E. Varvaruca,
Global bifurcation of steady gravity water waves with critical layers, Acta Math., 217 (2016), 195-262.
doi: 10.1007/s11511-017-0144-x. |
[20] |
A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates, Proc. Roy. Soc. A, 473 (2017), 18 pp.
doi: 10.1098/rspa. 2017.0063. |
[21] |
A. Constantin and R. I. Ivanov,
Equatorial wave-current interactions, Commun. Math. Phys., 370 (2019), 1-48.
doi: 10.1007/s00220-019-03483-8. |
[22] |
W. Craig,
Non-existence of solitary water waves in three dimensions. Recent developments in the mathematical theory of water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2127-2135.
doi: 10.1098/rsta.2002.1065. |
[23] |
W. Craig and D. Nicholls,
Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B Fluids, 21 (2002), 615-641.
doi: 10.1016/S0997-7546(02)01207-4. |
[24] |
M. Ehrnström, J. Escher and E. Wahlén,
Steady water waves with multiple critical layers, SIAM J. Math. Anal., 43 (2011), 1436-1456.
doi: 10.1137/100792330. |
[25] |
J. Escher, A.-V. Matioc and B.-V. Matioc,
On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differ. Equ., 251 (2011), 2932-2949.
doi: 10.1016/j.jde.2011.03.023. |
[26] |
J. Escher, P. Knopf, C. Lienstromberg and B.-V. Matioc,
Stratified periodic water waves with singular density gradients, Ann. Mat. Pura Appl., 199 (2020), 1923-1959.
doi: 10.1007/s10231-020-00950-1. |
[27] |
S. Friedlander and M. M. Vishik,
Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66 (1991), 2204-2206.
doi: 10.1103/PhysRevLett.66.2204. |
[28] |
F. Gerstner,
Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445.
|
[29] |
M. Groves, M. Hărăgus and S. M. Sun,
A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2189-2243.
doi: 10.1098/rsta.2002.1066. |
[30] |
M. Groves and M. Hărăgus,
A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., 13 (2003), 397-447.
doi: 10.1007/s00332-003-0530-8. |
[31] |
D. Henry,
On Gerstner's water wave, J. Nonlinear Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.s2.7. |
[32] |
D. Henry,
Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity, SIAM J. Math. Anal., 42 (2010), 3103-3111.
doi: 10.1137/100801408. |
[33] |
D. Henry and B.-V. Matioc,
On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 955-974.
|
[34] |
D. Henry and A.-V. Matioc,
Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinb. Sect. A, 144 (2014), 775-786.
doi: 10.1017/S0308210512001990. |
[35] |
D. Henry and C. I. Martin,
Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification, J. Differ. Equ., 266 (2019), 6788-6808.
doi: 10.1016/j.jde.2018.11.017. |
[36] |
D. Henry and C. I. Martin,
Azimuthal equatorial flows with variable density in spherical coordinate, Arch. Ration. Mech. Anal., 233 (2019), 497-512.
doi: 10.1007/s00205-019-01362-z. |
[37] |
D. Henry and C. I. Martin,
Stratified equatorial flows in cylindrical coordinates, Nonlinearity, 33 (2020), 3889-3904.
doi: 10.1088/1361-6544/ab801f. |
[38] |
M. H. Holmes, Introduction to Perturbation Methods, Texts in Applied Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5477-9. |
[39] |
D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 21 pp.
doi: 10.1098/rsta. 2017.0090. |
[40] |
D. Ionescu-Kruse,
Local Stability for an Exact Steady Purely Azimuthal Flow which Models the Antarctic Circumpolar Current, J. Math Fluid Mech., 20 (2018), 569-579.
doi: 10.1007/s00021-017-0335-4. |
[41] |
D. Ionescu-Kruse and C. I. Martin,
Local Stability for an Exact Steady Purely Azimuthal Equatorial Flow, J. Math. Fluid Mech., 20 (2018), 27-34.
doi: 10.1007/s00021-016-0311-4. |
[42] |
G. Iooss and P. Plotnikov, Small Divisor Problem in the Theory of Three-Dimensional Water Gravity Waves, Memoirs of the American Mathematical Society, 2009.
doi: 10.1090/memo/0940. |
[43] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997.
doi: 10.1017/CBO9780511624056.![]() ![]() ![]() |
[44] |
R. S. Johnson, Singular Perturbation Theory. Mathematical and Analytical Techniques with Applications to Engineering, Springer, 2005. |
[45] |
R. S. Johnson, Applications of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography, Phil. Trans. R. Soc. A Math. Phys. Eng. Sci., 376 (2018), 19 pp.
doi: 10.1098/rsta. 2017.0092. |
[46] |
I. G. Jonsson,
Wave-current interactions, Wiley, 9 (1989), 65-120.
|
[47] |
P. K. Kundu, I. M. Cohen and D. R. Dowling, Fluid Mechanics, Academic Press, 2016.
![]() |
[48] |
A. Lifschitz and E. Hameiri,
Local stability conditions in fluid dynamics, Phys. Fluids, 3 (1991), 2644-2651.
doi: 10.1063/1.858153. |
[49] |
E. Lokharu, D. S. Seth and E. Wahlén,
An existence theory for small amplitude doubly periodic water waves with vorticity, Arch. Rational Mech. Anal., 238 (2020), 607-637.
doi: 10.1007/s00205-020-01550-2. |
[50] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
[51] |
S. A. Maslowe,
Critical layers in shear flows, Annu. Rev. Fluid Mech., 18 (1986), 405-432.
|
[52] |
C. I. Martin and B.-V. Matioc,
Existence of wilton ripples for water waves with constant vorticity and capillary effects, SIAM J. Appl. Math., 73 (2013), 1582-1595.
doi: 10.1137/120900290. |
[53] |
C. I. Martin,
Resonant interactions of capillary-gravity water waves, J. Math. Fluid Mech., 19 (2017), 807-817.
doi: 10.1007/s00021-016-0306-1. |
[54] |
C. I. Martin,
Two-dimensionality of gravity water flows governed by the equatorial f-plane approximation, Ann. Mat. Pura Appl., 196 (2017), 2253-2260.
doi: 10.1007/s10231-017-0663-2. |
[55] |
C. I. Martin, Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity, Phys. Fluids, 30 (2018), 7 pp.
doi: 10.1063/1.5048580. |
[56] |
C. I. Martin,
Constant vorticity water flows with full Coriolis term, Nonlinearity, 32 (2019), 2327-2336.
doi: 10.1088/1361-6544/ab1c76. |
[57] |
C. I. Martin, Some explicit solutions of the three-dimensional Euler equations with a free surface, Math. Ann., (2021), 21 pp.
doi: 10.1007/s00208-021-02323-2. |
[58] |
B.-V. Matioc,
Global bifurcation for water waves with capillary effects and constant vorticity, Monatsh. Math., 174 (2014), 459-475.
doi: 10.1007/s00605-013-0583-1. |
[59] |
B.-V. Matioc,
Analyticity of the streamlines for periodic traveling water waves with bounded vorticity, Int. Math. Res. Not., 17 (2011), 3858-3871.
doi: 10.1093/imrn/rnq235. |
[60] |
E. I. Părău, J. M. Vanden-Broeck and M. J. Cooker,
Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems, Phys. Fluids, 17 (2005), 1-9.
doi: 10.1063/1.2140020. |
[61] |
E. I. Părău, J. M. Vanden-Broeck and M. J. Cooker,
Nonlinear three-dimensional gravity-capillary solitary waves, J. Fluid Mech., 536 (2005), 99-105.
doi: 10.1017/S0022112005005136. |
[62] |
E. I. Părău, J. M. Vanden-Broeck and M. J. Cooker,
Nonlinear three-dimensional interfacial flows with a free surface, J. Fluid Mech., 591 (2007), 481-494.
doi: 10.1017/S0022112007008452. |
[63] |
D. H. Peregrine,
Interaction of water waves and currents, Adv. Appl. Mech., 16 (1976), 9-117.
doi: 10.1017/S0334270000003891. |
[64] |
R. Stuhlmeier, On constant vorticity flows beneath two-dimensional surface solitary waves, J. Nonlinear Math. Phys., 19 (2012), 1240004, 9 pp.
doi: 10.1142/S1402925112400049. |
[65] |
G. P. Thomas,
Wave-current interactions: and experimental and numerical study, J. Fluid Mech., 216 (1990), 505-536.
|
[66] |
E. Wahlén,
Steady water waves with a critical layer, J. Differ. Equ., 246 (2009), 2468-2483.
doi: 10.1016/j.jde.2008.10.005. |
[67] |
E. Wahlén, Non-existence of three-dimensional travelling water waves with constant non-zero vorticity, J. Fluid Mech., 746 (2014), 7 pp.
doi: 10.1017/jfm. 2014.131. |
[68] |
H. Xia and N. Francois, Two-dimensional turbulence in three-dimensional flows, Phys. Fluids, 29 (2017), 14 pp. |
[69] |
H. Xia, D. Byrne, G. Falkovich and M. Shats,
Upscale energy transfer in thick turbulent fluid layers, Nat. Phys., 7 (2011), 321-324.
|
show all references
References:
[1] |
A. Aleman and A. Constantin,
On the decrease of kinetic energy with depth in wave-current interactions, Math. Ann., 378 (2020), 853-872.
doi: 10.1007/s00208-019-01910-8. |
[2] |
B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional inviscid flows, in Nonlinear Wave Interactions in Fluids, ASME, New York, 1987. |
[3] |
D. Byrne, H. Xia and M. Shats, Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid, Phys. Fluids, 23 (2011), 8 pp. |
[4] |
A. Constantin,
On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[5] |
A. Constantin,
Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731.
doi: 10.1088/0305-4470/34/45/311. |
[6] |
A. Constantin and J. Escher,
Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.
doi: 10.1017/S0022112003006773. |
[7] |
A. Constantin and W. Strauss,
Exact steady periodic water waves with vorticity, Commun. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046. |
[8] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[9] |
A. Constantin, M. Ehrnstr'̀om and E. Wahlén,
Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603.
doi: 10.1215/S0012-7094-07-14034-1. |
[10] |
A. Constantin and J. Escher,
Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[11] |
A. Constantin and E. Kartashova, Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Euro. Lett., 86 (2009), 6 pp.
doi: 10.1209/0295-5075/86/29001. |
[12] |
A. Constantin and J. Escher,
Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12. |
[13] |
A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis, in CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
doi: 10.1137/1.9781611971873. |
[14] |
A. Constantin,
Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 30 (2011), 12-16.
doi: 10.1016/j.euromechflu.2010.09.008. |
[15] |
A. Constantin and E. Varvaruca,
Steady periodic water waves with constant vorticity: regularity and local bifurcation, Arch. Ration. Mech. Anal., 199 (2011), 33-67.
doi: 10.1007/s00205-010-0314-x. |
[16] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), 4 pp.
doi: 10.1029/2012GL051169. |
[17] |
A. Constantin and P. Germain,
Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
|
[18] |
A. Constantin and R. I. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Phys. Fluids, 27 (2015), 8 pp.
doi: 10.1063/1.4929457. |
[19] |
A. Constantin, W. Strauss and E. Varvaruca,
Global bifurcation of steady gravity water waves with critical layers, Acta Math., 217 (2016), 195-262.
doi: 10.1007/s11511-017-0144-x. |
[20] |
A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates, Proc. Roy. Soc. A, 473 (2017), 18 pp.
doi: 10.1098/rspa. 2017.0063. |
[21] |
A. Constantin and R. I. Ivanov,
Equatorial wave-current interactions, Commun. Math. Phys., 370 (2019), 1-48.
doi: 10.1007/s00220-019-03483-8. |
[22] |
W. Craig,
Non-existence of solitary water waves in three dimensions. Recent developments in the mathematical theory of water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2127-2135.
doi: 10.1098/rsta.2002.1065. |
[23] |
W. Craig and D. Nicholls,
Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B Fluids, 21 (2002), 615-641.
doi: 10.1016/S0997-7546(02)01207-4. |
[24] |
M. Ehrnström, J. Escher and E. Wahlén,
Steady water waves with multiple critical layers, SIAM J. Math. Anal., 43 (2011), 1436-1456.
doi: 10.1137/100792330. |
[25] |
J. Escher, A.-V. Matioc and B.-V. Matioc,
On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differ. Equ., 251 (2011), 2932-2949.
doi: 10.1016/j.jde.2011.03.023. |
[26] |
J. Escher, P. Knopf, C. Lienstromberg and B.-V. Matioc,
Stratified periodic water waves with singular density gradients, Ann. Mat. Pura Appl., 199 (2020), 1923-1959.
doi: 10.1007/s10231-020-00950-1. |
[27] |
S. Friedlander and M. M. Vishik,
Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66 (1991), 2204-2206.
doi: 10.1103/PhysRevLett.66.2204. |
[28] |
F. Gerstner,
Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445.
|
[29] |
M. Groves, M. Hărăgus and S. M. Sun,
A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2189-2243.
doi: 10.1098/rsta.2002.1066. |
[30] |
M. Groves and M. Hărăgus,
A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., 13 (2003), 397-447.
doi: 10.1007/s00332-003-0530-8. |
[31] |
D. Henry,
On Gerstner's water wave, J. Nonlinear Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.s2.7. |
[32] |
D. Henry,
Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity, SIAM J. Math. Anal., 42 (2010), 3103-3111.
doi: 10.1137/100801408. |
[33] |
D. Henry and B.-V. Matioc,
On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 955-974.
|
[34] |
D. Henry and A.-V. Matioc,
Global bifurcation of capillary-gravity-stratified water waves, Proc. Roy. Soc. Edinb. Sect. A, 144 (2014), 775-786.
doi: 10.1017/S0308210512001990. |
[35] |
D. Henry and C. I. Martin,
Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification, J. Differ. Equ., 266 (2019), 6788-6808.
doi: 10.1016/j.jde.2018.11.017. |
[36] |
D. Henry and C. I. Martin,
Azimuthal equatorial flows with variable density in spherical coordinate, Arch. Ration. Mech. Anal., 233 (2019), 497-512.
doi: 10.1007/s00205-019-01362-z. |
[37] |
D. Henry and C. I. Martin,
Stratified equatorial flows in cylindrical coordinates, Nonlinearity, 33 (2020), 3889-3904.
doi: 10.1088/1361-6544/ab801f. |
[38] |
M. H. Holmes, Introduction to Perturbation Methods, Texts in Applied Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5477-9. |
[39] |
D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 21 pp.
doi: 10.1098/rsta. 2017.0090. |
[40] |
D. Ionescu-Kruse,
Local Stability for an Exact Steady Purely Azimuthal Flow which Models the Antarctic Circumpolar Current, J. Math Fluid Mech., 20 (2018), 569-579.
doi: 10.1007/s00021-017-0335-4. |
[41] |
D. Ionescu-Kruse and C. I. Martin,
Local Stability for an Exact Steady Purely Azimuthal Equatorial Flow, J. Math. Fluid Mech., 20 (2018), 27-34.
doi: 10.1007/s00021-016-0311-4. |
[42] |
G. Iooss and P. Plotnikov, Small Divisor Problem in the Theory of Three-Dimensional Water Gravity Waves, Memoirs of the American Mathematical Society, 2009.
doi: 10.1090/memo/0940. |
[43] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997.
doi: 10.1017/CBO9780511624056.![]() ![]() ![]() |
[44] |
R. S. Johnson, Singular Perturbation Theory. Mathematical and Analytical Techniques with Applications to Engineering, Springer, 2005. |
[45] |
R. S. Johnson, Applications of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography, Phil. Trans. R. Soc. A Math. Phys. Eng. Sci., 376 (2018), 19 pp.
doi: 10.1098/rsta. 2017.0092. |
[46] |
I. G. Jonsson,
Wave-current interactions, Wiley, 9 (1989), 65-120.
|
[47] |
P. K. Kundu, I. M. Cohen and D. R. Dowling, Fluid Mechanics, Academic Press, 2016.
![]() |
[48] |
A. Lifschitz and E. Hameiri,
Local stability conditions in fluid dynamics, Phys. Fluids, 3 (1991), 2644-2651.
doi: 10.1063/1.858153. |
[49] |
E. Lokharu, D. S. Seth and E. Wahlén,
An existence theory for small amplitude doubly periodic water waves with vorticity, Arch. Rational Mech. Anal., 238 (2020), 607-637.
doi: 10.1007/s00205-020-01550-2. |
[50] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
[51] |
S. A. Maslowe,
Critical layers in shear flows, Annu. Rev. Fluid Mech., 18 (1986), 405-432.
|
[52] |
C. I. Martin and B.-V. Matioc,
Existence of wilton ripples for water waves with constant vorticity and capillary effects, SIAM J. Appl. Math., 73 (2013), 1582-1595.
doi: 10.1137/120900290. |
[53] |
C. I. Martin,
Resonant interactions of capillary-gravity water waves, J. Math. Fluid Mech., 19 (2017), 807-817.
doi: 10.1007/s00021-016-0306-1. |
[54] |
C. I. Martin,
Two-dimensionality of gravity water flows governed by the equatorial f-plane approximation, Ann. Mat. Pura Appl., 196 (2017), 2253-2260.
doi: 10.1007/s10231-017-0663-2. |
[55] |
C. I. Martin, Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity, Phys. Fluids, 30 (2018), 7 pp.
doi: 10.1063/1.5048580. |
[56] |
C. I. Martin,
Constant vorticity water flows with full Coriolis term, Nonlinearity, 32 (2019), 2327-2336.
doi: 10.1088/1361-6544/ab1c76. |
[57] |
C. I. Martin, Some explicit solutions of the three-dimensional Euler equations with a free surface, Math. Ann., (2021), 21 pp.
doi: 10.1007/s00208-021-02323-2. |
[58] |
B.-V. Matioc,
Global bifurcation for water waves with capillary effects and constant vorticity, Monatsh. Math., 174 (2014), 459-475.
doi: 10.1007/s00605-013-0583-1. |
[59] |
B.-V. Matioc,
Analyticity of the streamlines for periodic traveling water waves with bounded vorticity, Int. Math. Res. Not., 17 (2011), 3858-3871.
doi: 10.1093/imrn/rnq235. |
[60] |
E. I. Părău, J. M. Vanden-Broeck and M. J. Cooker,
Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems, Phys. Fluids, 17 (2005), 1-9.
doi: 10.1063/1.2140020. |
[61] |
E. I. Părău, J. M. Vanden-Broeck and M. J. Cooker,
Nonlinear three-dimensional gravity-capillary solitary waves, J. Fluid Mech., 536 (2005), 99-105.
doi: 10.1017/S0022112005005136. |
[62] |
E. I. Părău, J. M. Vanden-Broeck and M. J. Cooker,
Nonlinear three-dimensional interfacial flows with a free surface, J. Fluid Mech., 591 (2007), 481-494.
doi: 10.1017/S0022112007008452. |
[63] |
D. H. Peregrine,
Interaction of water waves and currents, Adv. Appl. Mech., 16 (1976), 9-117.
doi: 10.1017/S0334270000003891. |
[64] |
R. Stuhlmeier, On constant vorticity flows beneath two-dimensional surface solitary waves, J. Nonlinear Math. Phys., 19 (2012), 1240004, 9 pp.
doi: 10.1142/S1402925112400049. |
[65] |
G. P. Thomas,
Wave-current interactions: and experimental and numerical study, J. Fluid Mech., 216 (1990), 505-536.
|
[66] |
E. Wahlén,
Steady water waves with a critical layer, J. Differ. Equ., 246 (2009), 2468-2483.
doi: 10.1016/j.jde.2008.10.005. |
[67] |
E. Wahlén, Non-existence of three-dimensional travelling water waves with constant non-zero vorticity, J. Fluid Mech., 746 (2014), 7 pp.
doi: 10.1017/jfm. 2014.131. |
[68] |
H. Xia and N. Francois, Two-dimensional turbulence in three-dimensional flows, Phys. Fluids, 29 (2017), 14 pp. |
[69] |
H. Xia, D. Byrne, G. Falkovich and M. Shats,
Upscale energy transfer in thick turbulent fluid layers, Nat. Phys., 7 (2011), 321-324.
|

[1] |
Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193 |
[2] |
Walter A. Strauss. Vorticity jumps in steady water waves. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101 |
[3] |
Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191 |
[4] |
Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239 |
[5] |
Igor Kukavica, Vlad C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 285-303. doi: 10.3934/dcds.2011.29.285 |
[6] |
Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060 |
[7] |
Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049 |
[8] |
Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29 (5) : 2841-2876. doi: 10.3934/era.2021017 |
[9] |
Paolo Paoletti. Acceleration waves in complex materials. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 637-659. doi: 10.3934/dcdsb.2012.17.637 |
[10] |
Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397 |
[11] |
Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483 |
[12] |
Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109 |
[13] |
Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667 |
[14] |
Corinna Burkard, Roland Potthast. A time-domain probe method for three-dimensional rough surface reconstructions. Inverse Problems and Imaging, 2009, 3 (2) : 259-274. doi: 10.3934/ipi.2009.3.259 |
[15] |
Tobias Breiten, Karl Kunisch. Feedback stabilization of the three-dimensional Navier-Stokes equations using generalized Lyapunov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4197-4229. doi: 10.3934/dcds.2020178 |
[16] |
Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062 |
[17] |
Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839 |
[18] |
Colette Guillopé, Samer Israwi, Raafat Talhouk. Large-time existence for one-dimensional Green-Naghdi equations with vorticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2947-2974. doi: 10.3934/dcdss.2021040 |
[19] |
Juan Vicente Gutiérrez-Santacreu. Two scenarios on a potential smoothness breakdown for the three-dimensional Navier–Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2593-2613. doi: 10.3934/dcds.2020142 |
[20] |
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]