We are concerned with sign-changing solutions and their concentration behaviors of singularly perturbed Kirchhoff problem
$ \begin{equation*} -(\varepsilon^{2}a+ \varepsilon b\int _{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v+V(x)v = P(x)f(v)\; \; {\rm{in}}\; \mathbb{R}^{3}, \end{equation*} $
where $ \varepsilon $ is a small positive parameter, $ a, b>0 $ and $ V, P\in C^{1}(\mathbb{R}^{3}, \mathbb{R}) $. Without using any non-degeneracy conditions, we obtain multiple localized sign-changing solutions of higher topological type for this problem. Furthermore, we also determine a concrete set as the concentration position of these sign-changing solutions. The main methods we use are penalization techniques and the method of invariant sets of descending flow. It is notice that, when nonlinear potential $ P $ is a positive constant, our result generalizes the result obtained in [
Citation: |
[1] |
T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149.![]() ![]() ![]() |
[2] |
J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Ⅱ, Calc. Var. Partial Differ. Equ., 18 (2003), 207-219.
doi: 10.1007/s00526-002-0191-8.![]() ![]() ![]() |
[3] |
D. Cassani, Z. Liu, C. Tarsi and J. J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145-161.
doi: 10.1016/j.na.2019.01.025.![]() ![]() ![]() |
[4] |
S. Chen, J. Q. Liu and Z. Q. Wang, Localized nodal solutions for a critical nonlinear Schrödinger equation, J. Funct. Anal., 277 (2019), 594-640.
doi: 10.1016/j.jfa.2018.10.027.![]() ![]() ![]() |
[5] |
S. Chen and Z. Q. Wang, Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 56 (2017), 1-26.
doi: 10.1007/s00526-016-1094-4.![]() ![]() ![]() |
[6] |
T. D'Aprile and A. Pistoia, Existence multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1423-1451.
doi: 10.1016/j.anihpc.2009.01.002.![]() ![]() ![]() |
[7] |
Y. B. Deng, S. J. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012.![]() ![]() ![]() |
[8] |
A. Floer and A. Weinstein, Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0.![]() ![]() ![]() |
[9] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
[10] |
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3}$, J. Differ. Equ., 252 (2012), 1813-1834.
doi: 10.1016/j.jde.2011.08.035.![]() ![]() ![]() |
[11] |
Y. He and G. B. Li, Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^{3}$ involving critical Sobolev exponents, Calc. Var. Partial Differ. Equ., 54 (2015), 3067-3106.
doi: 10.1007/s00526-015-0894-2.![]() ![]() ![]() |
[12] |
X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differ. Equ., 5 (2000), 899-928.
![]() ![]() |
[13] |
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
![]() |
[14] |
G. B. Li, P. Luo, S. J. Peng, C. H. Wang and C. L. Xiang, A singularly perturbed Kirchhoff problem revisited, J. Differ. Equ., 268 (2020), 541-589.
doi: 10.1016/j.jde.2019.08.016.![]() ![]() ![]() |
[15] |
G. B. Li and H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566-600.
doi: 10.1016/j.jde.2014.04.011.![]() ![]() ![]() |
[16] |
Y. H. Li, F. Y. Li and J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253 (2012), 2285-2294.
doi: 10.1016/j.jde.2012.05.017.![]() ![]() ![]() |
[17] |
J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.
![]() ![]() |
[18] |
J. Q. Liu, X. Liu and Z. Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 52 (2015), 565-586.
doi: 10.1007/s00526-014-0724-y.![]() ![]() ![]() |
[19] |
J. Q. Liu, X. Liu and Z. Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differ. Equ., 261 (2016), 7194-7236.
doi: 10.1016/j.jde.2016.09.018.![]() ![]() ![]() |
[20] |
X. Liu, J. Q. Liu and Z. Q. Wang, Localized nodal solutions for quasilinear Schrödinger equations, J. Differ. Equ., 267 (2019), 7411-7461.
doi: 10.1016/j.jde.2019.08.003.![]() ![]() ![]() |
[21] |
Z. Liu, Y. Lou and J. J. Zhang, A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity, arXiv: 1812.09240v2.
![]() |
[22] |
D. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer., 32 (1960), 1529-1538.
doi: 10.1121/1.1907948.![]() ![]() ![]() |
[23] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006.![]() ![]() ![]() |
[24] |
M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.
doi: 10.1007/BF01189950.![]() ![]() ![]() |
[25] |
P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631.![]() ![]() ![]() |
[26] |
W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equ., 259 (2015), 1256-1274.
doi: 10.1016/j.jde.2015.02.040.![]() ![]() ![]() |
[27] |
J. Sun, L. Li, M. Cencelj and B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^{3}$, Nonlinear Anal., 186 (2019), 33-54.
doi: 10.1016/j.na.2018.10.007.![]() ![]() ![]() |
[28] |
X. H. Tang and B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equ., 261 (2016), 2384-2402.
doi: 10.1016/j.jde.2016.04.032.![]() ![]() ![]() |
[29] |
K. Tintarev and K. H. Fieseler, Concentration Compactness Functional-Analytic Grounds and Applications, Imperial College Press, London, 2007.
doi: 10.1142/p456.![]() ![]() ![]() |
[30] |
J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351.
doi: 10.1016/j.jde.2012.05.023.![]() ![]() ![]() |
[31] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 153 (1993), 229-244.
![]() ![]() |
[32] |
L. Wang, B. L. Zhang and K. Cheng, Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 466 (2018), 1545-1569.
doi: 10.1016/j.jmaa.2018.06.071.![]() ![]() ![]() |
[33] |
Q. L. Xie, S. W. Ma and X. Zhang, Bound state solutions of Kirchhoff type problems with critical exponent, J. Differ. Equ., 261 (2016), 890-924.
doi: 10.1016/j.jde.2016.03.028.![]() ![]() ![]() |
[34] |
Q. L. Xie and X. Zhang, Semi-classical solutions for Kirchhoff type problem with a critical frequency, Proc. Roy. Soc. Edinb., 151 (2021), 761-798.
doi: 10.1017/prm.2020.37.![]() ![]() ![]() |
[35] |
Y. Yu and Y. H. Ding, An infinite sequence of localized nodal solutions for Schrödinger-Poisson system with double potentials, arXiv: 2007.14599v1.
![]() |