[1]
|
V. Bayle, Propriétés de Concavité du Profil Isopérimétrique et Applications, Ph.D. Thesis, Institut Joseph Fourier, Grenoble, 2004.
|
[2]
|
A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-540-74311-8.
|
[3]
|
R. Böhme, S. Hildebrandt and E. Taush, The two-dimensional analogue of the catenary, Pacific J. Math., 88 (1980), 247-278.
|
[4]
|
K. Castro and C. Rosales, Free boundary stable hypersurfaces in manifolds with density and rigidity results, J. Geom. Phys., 79 (2014), 14-28.
doi: 10.1016/j.geomphys.2014.01.013.
|
[5]
|
T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I; generic singularities, Ann. Math., 175 (2012), 755-833.
doi: 10.4007/annals.2012.175.2.7.
|
[6]
|
L. Colter, Cylindrical liquid bridges, Involve, 8 (2015), 695-705.
doi: 10.2140/involve.2015.8.695.
|
[7]
|
U. Dierkes, A Bernstein result for energy minimizing hypersurfaces, Calc. Var. Partial Differ. Equ., 1 (1993), 37-54.
doi: 10.1007/BF02163263.
|
[8]
|
U. Dierkes, Singular minimal surfaces, in Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003.
|
[9]
|
U. Dierkes and G. Huisken, The $n$-dimensional analogue of the catenary: existence and nonexistence, Pacific J. Math., 141 (1990), 47-54.
|
[10]
|
L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998.
|
[11]
|
D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Commun. Pure Appl. Math., 33 (1980), 199-211.
doi: 10.1002/cpa.3160330206.
|
[12]
|
M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal., 13 (2003), 178-215.
doi: 10.1007/s000390300004.
|
[13]
|
R. López, A criterion on instability of cylindrical rotating surfaces, Archiv Math., 94 (2010), 91-99.
doi: 10.1007/s00013-009-0085-5.
|
[14]
|
R. López, Bifurcation of cylinders for wetting and dewetting models with striped geometry, SIAM J. Math. Anal., 44 (2012), 946-965.
doi: 10.1137/11082484X.
|
[15]
|
R. López, Invariant singular minimal surfaces, Ann. Global Anal. Geom., 53 (2018), 521-541.
doi: 10.1007/s10455-017-9586-9.
|
[16]
|
J. McCuan, Extremities of stability for pendant drops, in Geometric Analysis, Mathematical Relativity, and Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 2013.
doi: 10.1090/conm/599/11944.
|
[17]
|
J. McCuan, The stability of cylindrical pendant drops, Mem. Amer. Math. Soc., 250 (2017), no. 1189.
doi: 10.1090/memo/1189.
|
[18]
|
F. Otto, Zugbeanspruchte Konstruktionen, Berlin, Frankfurt, Wien: Ullstein, 1962.
|
[19]
|
B. Palmer and O. Perdomo, Equilibrium shapes of cylindrical rotating liquid drops, Bull. Braz. Math. Soc., 46 (2015), 515-561.
|
[20]
|
J. A. F. Plateau, Statique Expérimentale et Théorique Des Liquides Soumis Aux Seules Forces Moléculaires, vol. 2. Gauthier-Villars, 2018.
|
[21]
|
J. W. S. Rayleigh, On the instability of jets, Proc. London Math. Soc., 10 (1879), 4-13.
doi: 10.1112/plms/s1-10.1.4.
|
[22]
|
R. Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, in Seminar on Minimal Submanifolds, Princeton Univ. Press, Princeton, 1983.
|
[23]
|
L. Shahriyari, Translating graphs by mean curvature flow, Geom Dedicata, 175 (2015), 57-64.
doi: 10.1007/s10711-014-0028-6.
|
[24]
|
J. Sun, Lagrangian L-stability of Lagrangian translating solitons, Manuscripta Math., 161 (2020), 247-255.
doi: 10.1007/s00229-018-1089-x.
|
[25]
|
Wikipedia, Colegio Teresiano de Barcelona, "https://es.wikipedia.org/w/index.php?title=Colegio_Teresiano_de_Barcelona&oldid=134544852".
|