The aim of this paper is to study a wide class of non-convex sweeping processes with moving constraint whose translation and deformation are represented by regulated functions, i. e., functions of not necessarily bounded variation admitting one-sided limits at every point. Assuming that the time-dependent constraint is uniformly prox-regular and has uniformly non-empty interior, we prove existence and uniqueness of solutions, as well as continuous data dependence with respect to the sup-norm.
Citation: |
[1] |
S. Adly, F. Nacry and L. Thibault, Discontinuous sweeping process with prox-regular sets, ESAIM: COCV, 23 (2017), 1293-1329.
doi: 10.1051/cocv/2016053.![]() ![]() ![]() |
[2] |
H. Benabdellah, Existence of solutions to the nonconvex sweeping process, J. Differ. Equ., 164 (2000), 286-295.
doi: 10.1006/jdeq.1999.3756.![]() ![]() ![]() |
[3] |
F. Bernicot and J. Venel, Existence of solutions for second-order differential inclusions involving proximal normal cones, J. Math. Pures Appl., 98 (2012), 257-294.
doi: 10.1016/j.matpur.2012.05.001.![]() ![]() ![]() |
[4] |
F. Bernicot and J. Venel, Sweeping process by prox-regular sets in Riemannian Hilbert manifolds, J. Differ. Equ., 259 (2015), 4086-4121.
doi: 10.1016/j.jde.2015.05.011.![]() ![]() ![]() |
[5] |
M. Brokate and P. Krejčí, Duality in the space of regulated functions and the play operator, Math. Zeit., 245 (2003), 667-688.
doi: 10.1007/s00209-003-0563-6.![]() ![]() ![]() |
[6] |
C. Castaing, Sur une nouvelle classe d'équation d'évolution dans les espaces de Hilbert, Sém. Anal. Conv., 13 (1983), 28 pp.
![]() ![]() |
[7] |
N. Chemetov and M. D. P. Monteiro Marques, Non-convex quasi-variational differential inclusions, Set-Valued Anal., 15 (2007), 209-221.
doi: 10.1007/s11228-007-0045-9.![]() ![]() ![]() |
[8] |
F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property., J. Convex Anal., 2 (1995), 117-144.
![]() ![]() |
[9] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.
![]() ![]() |
[10] |
G. Colombo and V. V. Goncharov, The sweeping process without convexity, Set-Valued Anal., 7 (1999), 357-374.
doi: 10.1023/A:1008774529556.![]() ![]() ![]() |
[11] |
G. Colombo and M. D. P. Monteiro Marques, Sweeping by a continuous prox-regular set, J. Differ. Equ., 187 (2003), 46-62.
doi: 10.1016/S0022-0396(02)00021-9.![]() ![]() ![]() |
[12] |
G. Colombo and L. Thibault, Prox-regular sets and applications, in Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, (2010), 99–182.
![]() ![]() |
[13] |
J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusions with perturbation, J. Differ. Equ., 226 (2006), 135-179.
doi: 10.1016/j.jde.2005.12.005.![]() ![]() ![]() |
[14] |
H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.
doi: 10.2307/1993504.![]() ![]() ![]() |
[15] |
D. Fraňková, Regulated functions with values in Banach space, Math. Bohem., 144 (2019), 437-456.
doi: 10.21136/MB.2019.0124-19.![]() ![]() ![]() |
[16] |
C. S. Hönig, Volterra Stieltjes-Integral Equations, North Holland and American Elsevier, Amsterdam and New York, 1975.
![]() ![]() |
[17] |
M. A. Krasnosel'skiǐ and A. V. Pokrovskiǐ, Systems with Hysteresis, Springer-Verlag, Berlin Heidelberg, 1989.
![]() ![]() |
[18] |
P. Krejčí, Vector hysteresis models, Euro. Jnl. Appl. Math., 2 (1991), 281-292.
doi: 10.1017/S0956792500000541.![]() ![]() ![]() |
[19] |
P. Krejčí, Hysteresis, Convexity, and Dissipation in Hyperbolic Equations, Gakkōtosho, Tokyo, 1996.
![]() ![]() |
[20] |
P. Krejčí, The Kurzweil integral with exclusion of negligible sets, Math. Bohem., 128 (2003), 277-292.
![]() ![]() |
[21] |
P. Krejčí, The Kurzweil integral and hysteresis, J. Phys.:Conference Series, 55 (2006), 144-154.
![]() |
[22] |
P. Krejčí and P. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.
![]() ![]() |
[23] |
P. Krejčí, G. A. Monteiro and V. Recupero, Explicit and implicit non-convex sweeping processes in the space of absolutely continuous functions, Appl. Math. Optim., 84 (2021), 1477-1504.
doi: 10.1007/s00245-021-09801-8.![]() ![]() ![]() |
[24] |
J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J., 7 (1957), 418-449.
![]() ![]() |
[25] |
J. Kurzweil, Generalized Ordinary Differential Equations, World Scientific Publishing, Hackensack, 2012.
doi: 10.1142/9789814324038.![]() ![]() ![]() |
[26] |
G. A. Monteiro and A. Slavík, Generalized elementary functions, J. Math. Anal. Appl., 411 (2014), 828-852.
doi: 10.1016/j.jmaa.2013.10.010.![]() ![]() ![]() |
[27] |
G. A. Monteiro, A. Slavík and M. Tvrdý, Kurzweil–Stieltjes Integral: Theory and Applications, World Scientific Publishing, New Jersey, 2019.
![]() ![]() |
[28] |
M. D. P. Monteiro Marques, Perturbations convexes semi-continues supérieurement de problèmes d'évolution dans les espaces de Hilbert, Sém. Anal. Conv., 14 (1984), 23 pp.
![]() ![]() |
[29] |
M. D. P. Monteiro Marques, Rafle par un convexe continu d'intérieur non vide en dimension infinie, Sém. Anal. Conv., 16 (1986), 11 pp.
![]() ![]() |
[30] |
M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems - Shocks and Dry Friction, Birkhäuser Verlag, Basel, 1993.
doi: 10.1007/978-3-0348-7614-8.![]() ![]() ![]() |
[31] |
J. J. Moreau, Rafle par un convexe variable I, Sém. Anal. Conv., 1 (1971), 43 pp.
![]() ![]() |
[32] |
J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equ., 26 (1977), 347-374.
doi: 10.1016/0022-0396(77)90085-7.![]() ![]() ![]() |
[33] |
F. Nacry and L. Thibault, BV prox-regular sweeping process with bounded truncated variation, Optimization, 69 (2020), 1391-1437.
doi: 10.1080/02331934.2018.1514039.![]() ![]() ![]() |
[34] |
J. Noel and L. Thibault, Nonconvex sweeping process with a moving set depending on the state, Vietnam J. Math., 42 (2014), 595-612.
doi: 10.1007/s10013-014-0109-8.![]() ![]() ![]() |
[35] |
K. Nyström and T. Önskog, Remarks on the Skorohod problem and reflected Lévy driven SDEs in time-dependent domains, Stochastics, 87 (2015), 747-765.
doi: 10.1080/17442508.2014.1000327.![]() ![]() ![]() |
[36] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2.![]() ![]() ![]() |
[37] |
V. Recupero, $BV$ solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sc., 10 (2011), 269-315.
![]() ![]() |
[38] |
V. Recupero and F. Santambrogio, Sweeping processes with prescribed behavior on jumps, Ann. Mat. Pura Appl., 197 (2018), 1311-1332.
doi: 10.1007/s10231-018-0726-z.![]() ![]() ![]() |
[39] |
L. Thibault, Sweeping process with regular and nonregular sets, J. Differ. Equ., 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3.![]() ![]() ![]() |
[40] |
L. Thibault, Moreau sweeping process with bounded truncated retraction, J. Convex Anal., 23 (2016), 1051-1098.
![]() ![]() |
[41] |
M. Valadier, Quelques problèmes d'entrainement unilatéral en dimension finie, Sém. Anal. Conv., 18 (1988), 21 pp.
![]() ![]() |
[42] |
J. Venel, A numerical scheme for a class of sweeping processes, Numer. Math., 118 (2011), 367-400.
doi: 10.1007/s00211-010-0329-0.![]() ![]() ![]() |
[43] |
J. P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res., 8 (1983), 231-259.
doi: 10.1287/moor.8.2.231.![]() ![]() ![]() |
Violation of the uniform non-empty interior condition