\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Preface to the special issue on analysis of geophysical phenomena

Abstract Full Text(HTML) Related Papers Cited by
  • Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Aleman and A. Constantin, Harmonic maps and ideal fluid flows, Arch. Ration. Mech. Anal., 204 (2012), 479-513.  doi: 10.1007/s00205-011-0483-2.
    [2] B. Basu, On the nonlinear three-dimensional models in equatorial ocean flows, Commun. Pure Appl. Anal., this issue.
    [3] J. P. Boyd, Dynamics of the Equatorial Ocean, Springer, Berlin, 2018.
    [4] A. Constantin, Edge waves along a sloping beach, J. Phys. A, 45 (2001), 9723-9731. 
    [5] A. Constantin, Frictional effects in wind-driven ocean currents, Geophys. Astrophys. Fluid Dyn., 115 (2021), 311-358.  doi: 10.1080/03091929.2020.1748614.
    [6] A. ConstantinD. G. CrowdyV. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discrete Cont. Dyn. Syst., 21 (2021), 201-215.  doi: 10.3934/dcds.2020263.
    [7] A. Constantin and P. Germain, Stratospheric planetary flows from the perspective of the Euler equation on a rotating sphere, Arch. Ration. Mech. Anal., to appear.
    [8] A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Comm. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.
    [9] A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1-48.  doi: 10.1007/s00205-016-0990-2.
    [10] A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.  doi: 10.1080/03091929.2015.1066785.
    [11] A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates, Proc. A, 473 (2017), Art. 20170063. doi: 10.1098/rspa.2017.0063.
    [12] A. Constantin and R. S. Johnson, Steady large-scale ocean flows in spherical coordinates, Oceanography, 31 (2018), 42-50. 
    [13] A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Boundary-Layer Meteorology, 170 (2019), 395-414. 
    [14] A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.
    [15] A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. A, 477 (2021), Art. 20200424.
    [16] A. Constantin and R. S. Johnson, On the propagation of nonlinear waves in the atmosphere, Proc. A, 478 (2022), Art. 20210895. doi: 10.1098/rspa.2021.0895.
    [17] A. Constantin and S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.  doi: 10.1017/jfm.2017.223.
    [18] O. Constantin and M. J. Martin, A harmonic maps approach to fluid flows, Math. Ann., 369 (2017), 1-16.  doi: 10.1007/s00208-016-1435-9.
    [19] D. G. Crowdy, Stuart vortices on a sphere, J. Fluid Mech., 398 (2004), 381-402.  doi: 10.1017/S0022112003007043.
    [20] J. D. Cullen and R. I. Ivanov, Hamiltonian description of internal ocean waves with Coriolis force, Commun. Pure Appl. Anal., this issue.
    [21] B. Cushman-Roisin and  J.-M. BeckersIntroduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic Press, New York, 2011. 
    [22] A. Geyer and R. Quirchmayr, Weakly nonlinear waves in stratified shear flows, Commun. Pure Appl. Anal., this issue.
    [23] S. Haziot, On the spherical geopotential approximation for Saturn, Commun. Pure Appl. Anal., this issue.
    [24] D. Henry, Energy considerations for nonlinear equatorial water waves, Commun. Pure Appl. Anal., this issue.
    [25] J. R. Holton and  G. J. HakimAn introduction to dynamic meteorology, Academic Press, 2013. 
    [26] R. S. Johnson, Some contributions to the theory of edge waves, J. Fluid Mech., 524 (2005), 81-97. 
    [27] R. S. Johnson, The ocean and the atmosphere: an applied mathematician's view, Commun. Pure Appl. Anal., this issue.
    [28] V. S. Krishnamurthy, Liouville links and chains on the plane and associated point vortex equilibria, Commun. Pure Appl. Anal., this issue.
    [29] J. LighthillWaves in fluids, Cambridge University Press, 2001. 
    [30] T. Lyons, Particle paths in equatorial flows, Commun. Pure Appl. Anal., this issue.
    [31] C. I. Martin, On three-dimensional free surface water flows with constant vorticity, Commun. Pure Appl. Anal., this issue.
    [32] K. Marynets, Stability analysis of the boundary value problem modeling a two-layer ocean, Commun. Pure Appl. Anal., this issue.
    [33] A.-V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A, 45 (2012), Art. 365501. doi: 10.1088/1751-8113/45/36/365501.
    [34] F. Miao, M. Fečkan and J. Wang, Exact solution and instability for geophysical edge waves, Commun. Pure Appl. Anal., this issue.
    [35] L. Roberti, The surface current of Ekman flows with time-dependent eddy viscosity, Commun. Pure Appl. Anal., this issue.
    [36] Ł. Rudnicki, Geophysics and Stuart vortices on a sphere meet differential geometry, Commun. Pure Appl. Anal., this issue.
    [37] G. K. VallisAtmosphere and Ocean Fluid Dynamics, Cambridge University Press, Cambridge, 2006. 
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views(1031) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return