We consider a class of time-fractional phase field models including the Allen-Cahn and Cahn-Hilliard equations. We establish several weighted positivity results for functionals driven by the Caputo time-fractional derivative. Several novel criterions are examined for showing the positive-definiteness of the associated kernel functions. We deduce strict energy-dissipation for a number of non-local energy functionals, thereby proving fractional energy dissipation laws.
Citation: |
[1] |
M. Caputo and M. Fabrizio, Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293 (2015), 400-408.
doi: 10.1016/j.jcp.2014.11.012.![]() ![]() ![]() |
[2] |
J. M. Carcione, F. J. Sanchez-Sesma, F. Luzón and J. J. P. Gavilán, Theory and simulation of time-fractional fluid diffusion in porous media, J. Phys. A, 46 (2013), 345501, 23 pp.
doi: 10.1088/1751-8113/46/34/345501.![]() ![]() ![]() |
[3] |
D. del Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Nondiffusive transport in plasma turbulence: A fractional diffusion approach, Phys. Rev. Lett., 94 (2005), 065003, 4 pp.
doi: 10.1103/PhysRevLett. 94.065003.![]() ![]() |
[4] |
H. Dong and Y. Liu, Weighted mixed norm estimates for fractional wave equations with VMO coefficients., arXiv: 2102.01136.
![]() |
[5] |
R. Durrett, Probability: Theory and Examples, Vol. 49. Cambridge university press, Cambridge, 2019.
doi: 10.1017/9781108591034.![]() ![]() ![]() |
[6] |
K.-N. Le, W. Mclean and M. Stynes, Existence, uniqueness and regularity of the solution of the time-fractional Fokker-Planck equation with general forcing, Commun. Pure Appl. Analysis, 18 (2019), 2765-2787.
doi: 10.3934/cpaa.2019124.![]() ![]() ![]() |
[7] |
M. L. Kavvas, T. Tu, A. Ercan and J. Polsinelli, Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time, Earth Syst. Dynam., 8 (2017), 921-929.
doi: 10.5194/esd-8-921-2017.![]() ![]() |
[8] |
L. Li, J.-G. Liu and L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.
doi: 10.1016/j.jde.2018.03.025.![]() ![]() ![]() |
[9] |
W. Li and A. J. Salgado, Time fractional gradient flows: Theory and numerics, arxiv: 2101.00541.
![]() |
[10] |
H. Liu, A. Cheng, H. Wang and J. Zhao, Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation., Comput. Math. Appl., 76 (2018), 1876-1892.
doi: 10.1016/j.camwa.2018.07.036.![]() ![]() ![]() |
[11] |
Y. Luchko and M. Yamamoto, On the maximum principle for a time-fractional diffusion equation, Fract. Calc. Appl. Anal., 20 (2017), 1131-1145.
doi: 10.1515/fca-2017-0060.![]() ![]() ![]() |
[12] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3.![]() ![]() |
[13] |
C. Quan, T. Tang and J. Yang, How to define dissipation-preserving energy for time-fractional phase-field equations, CSIAM Trans. Appl. Math., 1 (2020), 478-490.
doi: 10.4208/csiam-am.2020-0024.![]() ![]() |
[14] |
V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015) 210–239.
doi: 10.1137/130941900.![]() ![]() ![]() |
[15] |
V. Vergara and R. Zacher, Stability, instability, and blowup for time fractional and other non-local in time semilinear subdiffusion equations, J. Evol. Equ., 17 (2017), 599-626.
doi: 10.1007/s00028-016-0370-2.![]() ![]() ![]() |
[16] |
R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations, Math. Ann., 356 (2013), 99-146.
doi: 10.1007/s00208-012-0834-9.![]() ![]() ![]() |
[17] |
G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461-580.
doi: 10.1016/S0370-1573(02)00331-9.![]() ![]() ![]() |