October  2022, 21(10): 3389-3405. doi: 10.3934/cpaa.2022105

On the exponential time-decay for the one-dimensional wave equation with variable coefficients

1. 

Institute of Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria

2. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

3. 

St. Petersburg Department of V. A. Steklov Mathematical Institute, RAS, Fontanka 27, 191023 St. Petersburg, Russia

*Corresponding author

Received  January 2022 Revised  May 2022 Published  October 2022 Early access  June 2022

Fund Project: A. Arnold, S. Geevers, and I. Perugia have been funded by the Austrian Science Fund (FWF) through the project F 65 "Taming Complexity in Partial Differential Systems". I. Perugia has also been funded by the FWF through the project P 29197-N32. A. Arnold and D. Ponomarev were supported by the bi-national FWF-project I3538-N32

We consider the initial-value problem for the one-dimensional, time-dependent wave equation with positive, Lipschitz continuous coefficients, which are constant outside a bounded region. Under the assumption of compact support of the initial data, we prove that the local energy decays exponentially fast in time, and provide the explicit constant to which the solution converges for large times. We give explicit estimates of the rate of this exponential decay by two different techniques. The first one is based on the definition of a modified, weighted local energy, with suitably constructed weights. The second one is based on the integral formulation of the problem and, under a more restrictive assumption on the variation of the coefficients, allows us to obtain improved decay rates.

Citation: Anton Arnold, Sjoerd Geevers, Ilaria Perugia, Dmitry Ponomarev. On the exponential time-decay for the one-dimensional wave equation with variable coefficients. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3389-3405. doi: 10.3934/cpaa.2022105
References:
[1]

A. ArnoldJ. Carrillo and M. Tidriri, Large-time behavior of discrete kinetic equations with non-symmetric interactions, Math. Models Methods Appl. Sci., 12 (2002), 1555-1564.  doi: 10.1142/S0218202502002239.

[2]

A. Arnold, S. Geevers, I. Perugia and D. Ponomarev, On the limiting amplitude principle for the wave equation with variable coefficients, preprint, 2022, arXiv: 2202.10105.

[3]

J. M. Bouclet and N. Burq, Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds, Duke Mathematical Journal, 170 (2021), 2575-2629.  doi: 10.1215/00127094-2020-0080.

[4]

R. Charao and R. Ikehata, A note on decay rates of the local energy for wave equations with Lipschitz wavespeeds, J. Math. Anal. Appl., 483 (2020), 1-14.  doi: 10.1016/j.jmaa.2019.123636.

[5]

L. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, 2010. doi: 10.1090/gsm/019.

[6]

J. Lewis, The heterogeneous string: coupled helices in Hilbert space, Quart. Appl. Math., 38 (1981), 461-467.  doi: 10.1090/qam/614553.

[7]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[8]

M. Reed, Abstract Non-linear Wave Equations, Springer-Verlag, New York, 1976.

[9]

M. Renardy and R. Rogers, An Introduction to Partial Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2004.

[10]

J. Shapiro, Local energy decay for Lipschitz wavespeeds, Comm. Partial Differ. Equ., 43 (2018), 839-858.  doi: 10.1080/03605302.2018.1475491.

[11]

W. A. Strauss, Nonlinear Wave Equations, American Mathematical Society, Providence, 1989.

[12]

G. Teschl, Mathematical Methods in Quantum Mechanics: with Applications to Schrödinger operators, 2$^{nd}$ edition, American Mathematical Society, Providence, 2009. doi: 10.1090/gsm/099.

show all references

References:
[1]

A. ArnoldJ. Carrillo and M. Tidriri, Large-time behavior of discrete kinetic equations with non-symmetric interactions, Math. Models Methods Appl. Sci., 12 (2002), 1555-1564.  doi: 10.1142/S0218202502002239.

[2]

A. Arnold, S. Geevers, I. Perugia and D. Ponomarev, On the limiting amplitude principle for the wave equation with variable coefficients, preprint, 2022, arXiv: 2202.10105.

[3]

J. M. Bouclet and N. Burq, Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds, Duke Mathematical Journal, 170 (2021), 2575-2629.  doi: 10.1215/00127094-2020-0080.

[4]

R. Charao and R. Ikehata, A note on decay rates of the local energy for wave equations with Lipschitz wavespeeds, J. Math. Anal. Appl., 483 (2020), 1-14.  doi: 10.1016/j.jmaa.2019.123636.

[5]

L. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, 2010. doi: 10.1090/gsm/019.

[6]

J. Lewis, The heterogeneous string: coupled helices in Hilbert space, Quart. Appl. Math., 38 (1981), 461-467.  doi: 10.1090/qam/614553.

[7]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[8]

M. Reed, Abstract Non-linear Wave Equations, Springer-Verlag, New York, 1976.

[9]

M. Renardy and R. Rogers, An Introduction to Partial Differential Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 2004.

[10]

J. Shapiro, Local energy decay for Lipschitz wavespeeds, Comm. Partial Differ. Equ., 43 (2018), 839-858.  doi: 10.1080/03605302.2018.1475491.

[11]

W. A. Strauss, Nonlinear Wave Equations, American Mathematical Society, Providence, 1989.

[12]

G. Teschl, Mathematical Methods in Quantum Mechanics: with Applications to Schrödinger operators, 2$^{nd}$ edition, American Mathematical Society, Providence, 2009. doi: 10.1090/gsm/099.

Figure 1.  Blue: function $ \lambda_*(\gamma_0) $, implicitly defined by (3.21). Red: function $ \lambda_0(\gamma_0) $, defined in (3.22)
[1]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[2]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations and Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[3]

Monica Conti, Lorenzo Liverani, Vittorino Pata. On the optimal decay rate of the weakly damped wave equation. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3421-3424. doi: 10.3934/cpaa.2022107

[4]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[5]

Mingming Chen, Xianguo Geng, Kedong Wang. Long-time asymptotics for the modified complex short pulse equation. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4439-4470. doi: 10.3934/dcds.2022060

[6]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[7]

Baowei Feng. On the decay rates for a one-dimensional porous elasticity system with past history. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2905-2921. doi: 10.3934/cpaa.2019130

[8]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[9]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[10]

Norbert Požár, Giang Thi Thu Vu. Long-time behavior of the one-phase Stefan problem in periodic and random media. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 991-1010. doi: 10.3934/dcdss.2018058

[11]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[12]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[13]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[14]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[15]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[16]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[17]

Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159

[18]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[19]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[20]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (73)
  • HTML views (34)
  • Cited by (0)

[Back to Top]