October  2022, 21(10): 3421-3424. doi: 10.3934/cpaa.2022107

On the optimal decay rate of the weakly damped wave equation

Politecnico di Milano - Dipartimento di Matematica, Via Bonardi 9, 20133 Milano, Italy

* Corresponding author

Received  June 2022 Published  October 2022 Early access  June 2022

We provide a proof via direct energy estimates of the optimal exponential decay rate of the semigroup generated by the weakly damped wave equation.

Citation: Monica Conti, Lorenzo Liverani, Vittorino Pata. On the optimal decay rate of the weakly damped wave equation. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3421-3424. doi: 10.3934/cpaa.2022107
References:
[1]

M. ContiL. Liverani and V. Pata, The MGT-Fourier model in the supercritical case, J. Differ. Equ., 301 (2021), 543-567. 

[2]

F. Dell'Oro and V. Pata, Second order linear evolution equations with general dissipation, Appl. Math. Optim., 83 (2021), 1877-1917. 

[3]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

[4]

G. R. GoldsteinJ. A. Goldstein and G. Perla Menzala, On the overdamping phenomenon: a general result and applications, Quart. Appl. Math., 71 (2013), 183-199. 

[5]

G. R. GoldsteinJ. A. Goldstein and G. Reyes, Overdamping and energy decay for abstract wave equations with strong damping, Asymptot. Anal., 88 (2014), 217-232. 

[6]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

show all references

References:
[1]

M. ContiL. Liverani and V. Pata, The MGT-Fourier model in the supercritical case, J. Differ. Equ., 301 (2021), 543-567. 

[2]

F. Dell'Oro and V. Pata, Second order linear evolution equations with general dissipation, Appl. Math. Optim., 83 (2021), 1877-1917. 

[3]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

[4]

G. R. GoldsteinJ. A. Goldstein and G. Perla Menzala, On the overdamping phenomenon: a general result and applications, Quart. Appl. Math., 71 (2013), 183-199. 

[5]

G. R. GoldsteinJ. A. Goldstein and G. Reyes, Overdamping and energy decay for abstract wave equations with strong damping, Asymptot. Anal., 88 (2014), 217-232. 

[6]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

[1]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[2]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations and Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[3]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[4]

Louis Tebou. Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Mathematical Control and Related Fields, 2012, 2 (1) : 45-60. doi: 10.3934/mcrf.2012.2.45

[5]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[6]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[7]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[8]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations and Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[9]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[10]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[11]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[12]

Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2655-2670. doi: 10.3934/dcdss.2020410

[13]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[14]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[15]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[16]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[17]

Xinyu Mei, Chunyou Sun. Attractors for A sup-cubic weakly damped wave equation in $ \mathbb{R}^{3} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4117-4143. doi: 10.3934/dcdsb.2019053

[18]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[19]

Kaixuan Zhu, Yongqin Xie, Xinyu Mei. Pullback attractors for a weakly damped wave equation with delays and sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4433-4458. doi: 10.3934/dcdsb.2020294

[20]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (117)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]