# American Institute of Mathematical Sciences

January  1995, 1(1): 17-33. doi: 10.3934/dcds.1995.1.17

## Controllability of systems of interconnected membranes

 1 Department of Mathematics, Georgetown Univesity, Washington, DC 20057, United States

Received  September 1994 Published  December 1994

The problems of approximate, and exact, controllability of the transient behavior of a system of interconnected, two-dimensional elastic membranes in three dimensional space are considered. The membranes may have differing material properties. Control inputs and outputs are assumed to be restricted to the outer edges of the network and to the junction regions where two or more membranes are joined. The object is to characterize those membrane configurations which are approximately, or exactly, controllable. A class of membrane configurations which may be approximately controlled from the outer edges alone is identified. In particular, any two-membrane network may be approximately controlled from an arbitrarily small open subset of the outer boundary of one of the membranes. It is further proved that under some restrictions on the geometries of the individual membranes and the overall configuration, exactly controllability may be achieved through the action of controls along both the outer boundaries and in the junction regions of the network.
Citation: John E. Lagnese. Controllability of systems of interconnected membranes. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 17-33. doi: 10.3934/dcds.1995.1.17
 [1] Abdelaziz Bennour, Farid Ammar Khodja, Djamel Teniou. Exact and approximate controllability of coupled one-dimensional hyperbolic equations. Evolution Equations and Control Theory, 2017, 6 (4) : 487-516. doi: 10.3934/eect.2017025 [2] Robin Ming Chen, Feimin Huang, Dehua Wang, Difan Yuan. On the stability of two-dimensional nonisentropic elastic vortex sheets. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2519-2533. doi: 10.3934/cpaa.2021083 [3] Tong Zhang, Yuxi Zheng. Exact spiral solutions of the two-dimensional Euler equations. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 117-133. doi: 10.3934/dcds.1997.3.117 [4] Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1015-1043. doi: 10.3934/dcdss.2021147 [5] Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285 [6] Giovanni Alberti, Giuseppe Buttazzo, Serena Guarino Lo Bianco, Édouard Oudet. Optimal reinforcing networks for elastic membranes. Networks and Heterogeneous Media, 2019, 14 (3) : 589-615. doi: 10.3934/nhm.2019023 [7] M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283 [8] Lars Lamberg, Lauri Ylinen. Two-Dimensional tomography with unknown view angles. Inverse Problems and Imaging, 2007, 1 (4) : 623-642. doi: 10.3934/ipi.2007.1.623 [9] Elissar Nasreddine. Two-dimensional individual clustering model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307 [10] Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009 [11] Ibrahim Fatkullin, Valeriy Slastikov. Diffusive transport in two-dimensional nematics. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 323-340. doi: 10.3934/dcdss.2015.8.323 [12] Min Chen. Numerical investigation of a two-dimensional Boussinesq system. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1169-1190. doi: 10.3934/dcds.2009.23.1169 [13] Fumihiko Nakamura, Michael C. Mackey. Asymptotic (statistical) periodicity in two-dimensional maps. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021227 [14] Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014 [15] Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 [16] Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6015-6027. doi: 10.3934/dcds.2018152 [17] Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations and Control Theory, 2021, 10 (4) : 749-766. doi: 10.3934/eect.2020091 [18] Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure and Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431 [19] Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107 [20] Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

2020 Impact Factor: 1.392