$\qquad\qquad \qquad\qquad \epsilon u_{t t} -\Delta u + \lambda u =f $ on $\Omega \times (0,T)$
$(P_{\epsilon, \lambda, \Gamma_0})\qquad\qquad u_t + \frac{\partial u}{\partial \vec{n}} =g$ on $\Gamma_1 \times (0,T) $
$\qquad\qquad u=0 $ on $\Gamma_0 \times (0,T)$
where $0< \epsilon \leq \epsilon_0$, $\Omega \subset \mathbb R^N$ is a
regular open connected set, $\lambda \geq 0$ and $\Gamma = \Gamma_0\cup \Gamma_1$ is a partition of the boundary of $\Omega$. We will
also consider the case where $\Gamma_0$ is empty (see below for
more precise assumptions on $\lambda$, $\Omega$ and $\Gamma_0$,
$\Gamma_1$).
For this problem the corresponding formal singular perturbation at
$\epsilon =0$ is
$\qquad\qquad \qquad\qquad -\Delta u + \lambda u =f$ on $\Omega \times (0,T) $
$(P_{0, \lambda, \Gamma_0}) \qquad\qquad u_t + \frac{\partial u}{\partial \vec{n}} =g$ on $\Gamma_1 \times (0,T) $
$\qquad\qquad u=0 $ on $ \Gamma_0 \times (0,T)$
We are here concerned with the well possedness of both problems for the non--homogeneous case, i.e. $f=f(t,x)$, $g=g(t,x)$, and with the convergence, as $\epsilon$ approaches $0$, of the solutions of $(P_{\epsilon, \lambda, \Gamma_0})$ to solutions of $(P_{0, \lambda, \Gamma_0})$.
Citation: |