October  1995, 1(4): 463-474. doi: 10.3934/dcds.1995.1.463

Subharmonic solutions in the restricted three-body problem

1. 

Departmento de Mathematica, Universidade Federal de Pernambuco, 50739 Recife, PE, Brazil

2. 

Department of Mathematics, Northwestern University, Evanston, Illinois 60208

Received  August 1995 Published  August 1995

In this paper, we study the subharmonic bifurcations in the restricted three-body problem. By study the Melnikov integrals for the subharmonic solutions, we obtain the precise bifurcation scenario nearby the circular solutions when one of the two primaries is small.
Citation: Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463
[1]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[2]

Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057

[3]

Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044

[4]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[5]

Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229

[6]

Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted three-body models for the Trojan motion. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 843-854. doi: 10.3934/dcds.2004.11.843

[7]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[8]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[9]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[10]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[11]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[12]

Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85

[13]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[14]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[15]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[16]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[17]

Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987

[18]

Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar three-body problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 569-595. doi: 10.3934/dcdsb.2008.10.569

[19]

Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3989-4018. doi: 10.3934/dcds.2017169

[20]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]