January  1996, 2(1): 111-120. doi: 10.3934/dcds.1996.2.111

On chain continuity


Mathematics Department, The City College, New York, N. Y. 10031, United States

Received  May 1995 Published  October 1995

A number of recent papers examine for a dynamical system $f: X \rightarrow X$ the concept of equicontinuity at a point. A point $x \in X$ is an equicontinuity point for $f$ if for every $\epsilon > 0$ there is a $\delta > 0$ so that the orbit of initial points $\delta$ close to $x$ remains at all times $\epsilon$ close to the corresponding points of the orbit of $x$, i.e. $d(x,x_0) < \delta$ implies $d(f^i(x),f^i(x_0)) \leq \epsilon$ for $i = 1,2,\ldots$. If we suppose that the errors occur not only at the initial point but at each iterate we obtain not the orbit of $x_0$ but a $\delta$-chain, a sequence $\{x_0,x_1,x_2,\ldots\}$ such that $d(f(x_i),x_{i+1}) \leq \delta$ for $i = 0,1,\ldots$. The point $x$ is called a chain continuity point for $f$ if for every $\epsilon > 0$ there is a $\delta > 0$ so that all $\delta$ chains beginning $\delta$ close to $x$ remain $\epsilon$ close to the points of the orbit of $x$, i.e. $d(x,x_0) < \delta$ and $d(f(x_i),x_{i+1}) \leq \delta$ imply $d(f^i(x),x_i) \leq \epsilon$ for $i = 1,2,\ldots$. In this note we characterize this property of chain continuity. Despite the strength of this property, there is a class of systems $(X,f)$ for which the chain continuity points form a residual subset of the space $X$. For a manifold $X$ this class includes a residual subset of the space of homeomorphisms on $X$.
Citation: Ethan Akin. On chain continuity. Discrete & Continuous Dynamical Systems, 1996, 2 (1) : 111-120. doi: 10.3934/dcds.1996.2.111

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1


Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039


Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115


Olexiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Chain recurrence and structure of $ \omega $-limit sets of multivalued semiflows. Communications on Pure &amp; Applied Analysis, 2020, 19 (4) : 2197-2217. doi: 10.3934/cpaa.2020096


Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057


Charalampos Evripidou, Pavlos Kassotakis, Pol Vanhaecke. Integrable reductions of the dressing chain. Journal of Computational Dynamics, 2019, 6 (2) : 277-306. doi: 10.3934/jcd.2019014


Noriaki Kawaguchi. Maximal chain continuous factor. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021101


Michela Eleuteri, Paolo Marcellini, Elvira Mascolo. Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 251-265. doi: 10.3934/dcdss.2019018


Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257


Michael Herrmann, Antonio Segatti. Infinite harmonic chain with heavy mass. Communications on Pure &amp; Applied Analysis, 2010, 9 (1) : 61-75. doi: 10.3934/cpaa.2010.9.61


Deng Lu, Maria De Iorio, Ajay Jasra, Gary L. Rosner. Bayesian inference for latent chain graphs. Foundations of Data Science, 2020, 2 (1) : 35-54. doi: 10.3934/fods.2020003


Joshua E.S. Socolar. Discrete models of force chain networks. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 601-618. doi: 10.3934/dcdsb.2003.3.601


Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169


Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719


Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181


S. R.-J. Jang, J. Baglama, P. Seshaiyer. Intratrophic predation in a simple food chain with fluctuating nutrient. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 335-352. doi: 10.3934/dcdsb.2005.5.335


Maria Paola Cassinari, Maria Groppi, Claudio Tebaldi. Effects of predation efficiencies on the dynamics of a tritrophic food chain. Mathematical Biosciences & Engineering, 2007, 4 (3) : 431-456. doi: 10.3934/mbe.2007.4.431


Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81


Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151


Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

2020 Impact Factor: 1.392


  • PDF downloads (122)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]