January  1996, 2(1): 23-52. doi: 10.3934/dcds.1996.2.23

Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces

1. 

Departement de mathematiques, Universite Montpellier II, 34095 Montpellier cedex 5, France

Received  October 1995 Published  October 1995

Under quite general assumptions, we prove existence, uniqueness and regularity of a solution $U$ to the evolution equation $-U'(t)\in\partial(g\circ F)(U(t))$, $U(0)=u_0$, where $g:\mathbb{R}^q\rightarrow\mathbb{R}\cup\{+\infty\}$ is a closed proper convex function, $F:\mathbb{R}^p\rightarrow \mathbb{R}^q$ is a continuously differentiable mapping whose gradient is Lipschitz continuous on bounded subsets and $u_0\in\dom (g\circ F)$. We also study the asymptotic behavior of $U$ and give an application to nonlinear mathematical programming.
Citation: Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23
[1]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial and Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[2]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial and Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[3]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[4]

Tomáš Roubíček. On certain convex compactifications for relaxation in evolution problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 467-482. doi: 10.3934/dcdss.2011.4.467

[5]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[6]

Goro Akagi, Jun Kobayashi, Mitsuharu Ôtani. Principle of symmetric criticality and evolution equations. Conference Publications, 2003, 2003 (Special) : 1-10. doi: 10.3934/proc.2003.2003.1

[7]

Filippo Dell'Oro, Olivier Goubet, Youcef Mammeri, Vittorino Pata. A semidiscrete scheme for evolution equations with memory. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5637-5658. doi: 10.3934/dcds.2019247

[8]

Goro Akagi, Mitsuharu Ôtani. Evolution equations and subdifferentials in Banach spaces. Conference Publications, 2003, 2003 (Special) : 11-20. doi: 10.3934/proc.2003.2003.11

[9]

D. Bresch, T. Colin, M. Ghil, Shouhong Wang. Qualitative properties of some evolution equations. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : i-ii. doi: 10.3934/dcds.2004.11.1i

[10]

Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems and Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070

[12]

Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1173-1185. doi: 10.3934/jimo.2020016

[13]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure and Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[14]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial and Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[15]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations and Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[16]

Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 15-34. doi: 10.3934/eect.2017002

[17]

Risei Kano, Yusuke Murase. Solvability of nonlinear evolution equations generated by subdifferentials and perturbations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 75-93. doi: 10.3934/dcdss.2014.7.75

[18]

Rémi Carles, Clotilde Fermanian-Kammerer, Norbert J. Mauser, Hans Peter Stimming. On the time evolution of Wigner measures for Schrödinger equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 559-585. doi: 10.3934/cpaa.2009.8.559

[19]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[20]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]