# American Institute of Mathematical Sciences

April  1996, 2(2): 281-293. doi: 10.3934/dcds.1996.2.281

## Control of plate vibrations by means of piezoelectric actuators

 1 Centre de Mathématiques Appliqués (CMAP), Ecole Polytechnique, 91128 Palaiseau and Université de Versailles, France

Received  July 1995 Revised  October 1995 Published  February 1996

We consider initial and boundary value problems modelling the vibrations of a plate with piezoelectric actuator. The simplest model leads to the Bernoulli-Euler plate equation with right hand side given by a distribution concentrated in an interior curve multiplied by a real valued time function representing the voltage applied to the actuator. We prove that, generically with respect to the curve, the plate vibrations can be strongly stabilized and approximatively controlled by means of the voltage applied to the actuator.
Citation: Marius Tucsnak. Control of plate vibrations by means of piezoelectric actuators. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 281-293. doi: 10.3934/dcds.1996.2.281
 [1] Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1015-1043. doi: 10.3934/dcdss.2021147 [2] José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control and Related Fields, 2020, 10 (2) : 275-304. doi: 10.3934/mcrf.2019039 [3] Bei Gong, Zhen-Hu Ning, Fengyan Yang. Stabilization of the transmission wave/plate equation with variable coefficients on ${\mathbb{R}}^n$. Evolution Equations and Control Theory, 2021, 10 (2) : 321-331. doi: 10.3934/eect.2020068 [4] Behzad Azmi, Karl Kunisch, Sérgio S. Rodrigues. Stabilization of nonautonomous parabolic equations by a single moving actuator. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5789-5824. doi: 10.3934/dcds.2021096 [5] K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 [6] Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1075-1090. doi: 10.3934/dcdsb.2021081 [7] Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 [8] Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations and Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557 [9] Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations and Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315 [10] Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations and Control Theory, 2021, 10 (4) : 749-766. doi: 10.3934/eect.2020091 [11] Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91 [12] Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations and Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001 [13] Hans Weinberger. The approximate controllability of a model for mutant selection. Evolution Equations and Control Theory, 2013, 2 (4) : 741-747. doi: 10.3934/eect.2013.2.741 [14] Ahmet Özkan Özer. Dynamic and electrostatic modeling for a piezoelectric smart composite and related stabilization results. Evolution Equations and Control Theory, 2018, 7 (4) : 639-668. doi: 10.3934/eect.2018031 [15] Louis Tebou. Simultaneous stabilization of a system of interacting plate and membrane. Evolution Equations and Control Theory, 2013, 2 (1) : 153-172. doi: 10.3934/eect.2013.2.153 [16] Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations and Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1 [17] Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719 [18] Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations and Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167 [19] Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations and Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373 [20] Hugo Leiva, Jahnett Uzcategui. Approximate controllability of discrete semilinear systems and applications. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1803-1812. doi: 10.3934/dcdsb.2016023

2020 Impact Factor: 1.392