-
Previous Article
Discretizations of dynamical systems with a saddle-node homoclinic orbit
- DCDS Home
- This Issue
-
Next Article
Exponential attractors for the slightly compressible 2D-Navier-Stokes
Stably ergodic skew products
1. | IBM Research, Watson Research Center, PO Box 218, Yorktown Heights, New York 10598 |
[1] |
Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197 |
[2] |
Roy Adler, Bruce Kitchens, Michael Shub. Errata to "Stably ergodic skew products". Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 456-456. doi: 10.3934/dcds.1999.5.456 |
[3] |
Matthieu Astorg, Fabrizio Bianchi. Higher bifurcations for polynomial skew products. Journal of Modern Dynamics, 2022, 18: 69-99. doi: 10.3934/jmd.2022003 |
[4] |
Àlex Haro. On strange attractors in a class of pinched skew products. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605 |
[5] |
Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907 |
[6] |
Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893 |
[7] |
Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657 |
[8] |
Viorel Nitica. Examples of topologically transitive skew-products. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351 |
[9] |
Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006 |
[10] |
Jon Aaronson, Michael Bromberg, Nishant Chandgotia. Rational ergodicity of step function skew products. Journal of Modern Dynamics, 2018, 13: 1-42. doi: 10.3934/jmd.2018012 |
[11] |
Daniel Guan. Modification and the cohomology groups of compact solvmanifolds. Electronic Research Announcements, 2007, 13: 74-81. |
[12] |
C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897 |
[13] |
Núria Fagella, Àngel Jorba, Marc Jorba-Cuscó, Joan Carles Tatjer. Classification of linear skew-products of the complex plane and an affine route to fractalization. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3767-3787. doi: 10.3934/dcds.2019153 |
[14] |
Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985 |
[15] |
Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283 |
[16] |
Hans Koch. On trigonometric skew-products over irrational circle-rotations. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5455-5471. doi: 10.3934/dcds.2021084 |
[17] |
L. Yu. Glebsky and E. I. Gordon. On approximation of locally compact groups by finite algebraic systems. Electronic Research Announcements, 2004, 10: 21-28. |
[18] |
Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006 |
[19] |
Sang-Gyun Youn. On the Sobolev embedding properties for compact matrix quantum groups of Kac type. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3341-3366. doi: 10.3934/cpaa.2020148 |
[20] |
Rui Gao, Weixiao Shen. Analytic skew-products of quadratic polynomials over Misiurewicz-Thurston maps. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2013-2036. doi: 10.3934/dcds.2014.34.2013 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]