This issuePrevious ArticleStably ergodic skew productsNext ArticleExact controllability of the wave equation for domains with slits and for mixed boundary conditions
Discretizations of dynamical systems with a saddle-node homoclinic orbit
We consider a parametrized dynamical system with a homoclinic orbit that connects the center manifold of a saddle node to its strongly stable manifold. This is a codimension 2 homoclinic bifurcation with a well known unfolding. We show that the map obtained by discretizing such a system with a one-step method (the centered Euler scheme), inherits a discrete saddle-node homoclinic orbit. This orbit occurs on the line of saddle nodes and, as the numerical results suggest, there is actually a closed curve of such orbits and almost all of them consist of transversal homoclinic points. Our results complement those of [1], [5] on homoclinic discretization effects in the hyperbolic case.