July  1996, 2(3): 397-411. doi: 10.3934/dcds.1996.2.397

Hyperbolic measures and commuting maps in low dimension

1. 

Department of Mathematics, Penn State University, University Park, State College, PA 16802

Received  May 1996 Published  May 1996

We study invariant measures with non-vanishing Lyapunov characteristic exponents for commuting diffeomorphisms of compact manifolds. In particular we show that for $k=2,3$ no faithful $\mathbb{Z}^k$ real-analytic action on a $k$-dimensional manifold preserves a hyperbolic measure. In the smooth case similar statements hold for actions faithful on the support of the measure. Generalizations to higher dimension are proved under certain non-degeneracy conditions for the Lyapunov exponents.
Citation: Anatole Katok. Hyperbolic measures and commuting maps in low dimension. Discrete & Continuous Dynamical Systems, 1996, 2 (3) : 397-411. doi: 10.3934/dcds.1996.2.397
[1]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

[2]

Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747

[3]

Andy Hammerlindl, Rafael Potrie, Mario Shannon. Seifert manifolds admitting partially hyperbolic diffeomorphisms. Journal of Modern Dynamics, 2018, 12: 193-222. doi: 10.3934/jmd.2018008

[4]

Anja Randecker, Giulio Tiozzo. Cusp excursion in hyperbolic manifolds and singularity of harmonic measure. Journal of Modern Dynamics, 2021, 17: 183-211. doi: 10.3934/jmd.2021006

[5]

Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565

[6]

Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541

[7]

Jinhua Zhang. Partially hyperbolic diffeomorphisms with one-dimensional neutral center on 3-manifolds. Journal of Modern Dynamics, 2021, 17: 557-584. doi: 10.3934/jmd.2021019

[8]

Andrew M. Zimmer. Compact asymptotically harmonic manifolds. Journal of Modern Dynamics, 2012, 6 (3) : 377-403. doi: 10.3934/jmd.2012.6.377

[9]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[10]

Yazhou Han. Integral equations on compact CR manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2187-2204. doi: 10.3934/dcds.2020358

[11]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[12]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[13]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[14]

Woocheol Choi. Maximal functions of multipliers on compact manifolds without boundary. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1885-1902. doi: 10.3934/cpaa.2015.14.1885

[15]

Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064

[16]

Ha Tuan Dung, Nguyen Thac Dung, Jiayong Wu. Sharp gradient estimates on weighted manifolds with compact boundary. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4127-4138. doi: 10.3934/cpaa.2021148

[17]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

[18]

F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74

[19]

Boris Kalinin, Victoria Sadovskaya. Holonomies and cohomology for cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 245-259. doi: 10.3934/dcds.2016.36.245

[20]

Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]