# American Institute of Mathematical Sciences

• Previous Article
The asymptotic behavior of solutions of a semilinear parabolic equation
• DCDS Home
• This Issue
• Next Article
Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions
October  1996, 2(4): 467-482. doi: 10.3934/dcds.1996.2.467

## Nonlinear Galerkin approximation of the two dimensional exterior Navier-Stokes problem

 1 Research Center for Applied Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  October 1995 Revised  April 1996 Published  July 1996

In this paper, we present an Oseen coupling problem to approximate the two dimensional exterior unsteady Navier-Stokes problem with the nonhomogeneous boundary conditions. The Oseen coupling problem consists of the Navier-Stokes equations in a bounded region and the Oseen equations in an unbounded region. Then we derive the reduced Oseen coupling problem by use of the integral representations of the solution of the Oseen equations in an unbounded region. Moreover, we present the Galerkin approximation and the nonlinear Galerkin approximation for the reduced Oseen coupling problem. By analysing their convergence rates, we find that the nonlinear Galerkin approximation provides the same convergence order as the classical Galerkin approximation if we choose the space discrete parameter $H=O(h^{1/2})$. However, in this approximation, the nonlinearity is treated on the coarse grid finite element space and only the linear problem needs to be solved on the fine grid finite element space.
Citation: Yinnian He, Kaitai Li. Nonlinear Galerkin approximation of the two dimensional exterior Navier-Stokes problem. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 467-482. doi: 10.3934/dcds.1996.2.467
 [1] Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497 [2] Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159 [3] Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081 [4] Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323 [5] Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 [6] Eid Wassim, Yueqiang Shang. Local and parallel finite element algorithms for the incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022022 [7] Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339 [8] Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369 [9] Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006 [10] Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829 [11] Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315 [12] Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613 [13] Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 [14] Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 [15] Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 [16] Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations and Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147 [17] Trinh Viet Duoc. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3387-3405. doi: 10.3934/dcds.2018145 [18] Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052 [19] Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034 [20] Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29 (3) : 2489-2516. doi: 10.3934/era.2020126

2020 Impact Factor: 1.392