-
Previous Article
Large optimal truncated low-dimensional dynamical systems
- DCDS Home
- This Issue
-
Next Article
On the structure of the permanence region for competing species models with general diffusivities and transport effects
Some new generalizations of inertial manifolds
1. | Laboratoire d'Analyse Numérique et EDP, Unité de Recherche Associée 760, Université de Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France, France |
[1] |
James C. Robinson. Computing inertial manifolds. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 815-833. doi: 10.3934/dcds.2002.8.815 |
[2] |
José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921 |
[3] |
James C. Robinson. Inertial manifolds with and without delay. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 813-824. doi: 10.3934/dcds.1999.5.813 |
[4] |
Ricardo Rosa. Approximate inertial manifolds of exponential order. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 421-448. doi: 10.3934/dcds.1995.1.421 |
[5] |
Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35 |
[6] |
George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189 |
[7] |
A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829 |
[8] |
Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831 |
[9] |
Vladimir V. Chepyzhov, Anna Kostianko, Sergey Zelik. Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1115-1142. doi: 10.3934/dcdsb.2019009 |
[10] |
Changbing Hu, Kaitai Li. A simple construction of inertial manifolds under time discretization. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 531-540. doi: 10.3934/dcds.1997.3.531 |
[11] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[12] |
Rolf Bronstering. Some computational aspects of approximate inertial manifolds and finite differences. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 417-454. doi: 10.3934/dcds.1996.2.417 |
[13] |
Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917 |
[14] |
L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555 |
[15] |
Nguyen Thieu Huy, Pham Truong Xuan, Vu Thi Ngoc Ha, Vu Thi Thuy Ha. Inertial manifolds for parabolic differential equations: The fully nonautonomous case. Communications on Pure and Applied Analysis, 2022, 21 (3) : 943-958. doi: 10.3934/cpaa.2022005 |
[16] |
Ahmed Bonfoh. Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems. Evolution Equations and Control Theory, 2022, 11 (4) : 1399-1454. doi: 10.3934/eect.2021049 |
[17] |
José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1 |
[18] |
George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203 |
[19] |
Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133 |
[20] |
Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]