
Previous Article
AubryMather theory for functions on lattices
 DCDS Home
 This Issue

Next Article
A billiard in the hyperbolic plane with decay of correlation of type $n^{2}$
Exact spiral solutions of the twodimensional Euler equations
1.  Institute of Mathematics, Academia Sinica, Beijing, 100080 
2.  Department of Mathematics, Indiana University, Bloomington, IN 47405, United States 
[1] 
D. G. Aronson. Selfsimilar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 16851691. doi: 10.3934/dcdsb.2012.17.1685 
[2] 
Weronika Biedrzycka, Marta TyranKamińska. Selfsimilar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 1327. doi: 10.3934/dcdsb.2018002 
[3] 
Marco Cannone, Grzegorz Karch. On selfsimilar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801808. doi: 10.3934/krm.2013.6.801 
[4] 
Kin Ming Hui. Existence of selfsimilar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 863880. doi: 10.3934/dcds.2019036 
[5] 
Qiaolin He. Numerical simulation and selfsimilar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 101116. doi: 10.3934/dcdsb.2010.13.101 
[6] 
Bendong Lou. Selfsimilar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857879. doi: 10.3934/nhm.2012.7.857 
[7] 
F. Berezovskaya, G. Karev. Bifurcations of selfsimilar solutions of the FokkerPlank equations. Conference Publications, 2005, 2005 (Special) : 9199. doi: 10.3934/proc.2005.2005.91 
[8] 
Shota Sato, Eiji Yanagida. Singular backward selfsimilar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  S, 2011, 4 (4) : 897906. doi: 10.3934/dcdss.2011.4.897 
[9] 
Alberto Bressan, Wen Shen. A posteriori error estimates for selfsimilar solutions to the Euler equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 113130. doi: 10.3934/dcds.2020168 
[10] 
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to selfsimilar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 703716. doi: 10.3934/dcds.2008.21.703 
[11] 
Hyungjin Huh. Selfsimilar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 5360. doi: 10.3934/eect.2018003 
[12] 
Thomas Y. Hou, Ruo Li. Nonexistence of locally selfsimilar blowup for the 3D incompressible NavierStokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637642. doi: 10.3934/dcds.2007.18.637 
[13] 
Hideo Kubo, Kotaro Tsugawa. Global solutions and selfsimilar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 471482. doi: 10.3934/dcds.2003.9.471 
[14] 
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. selfsimilar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 5176. doi: 10.3934/cpaa.2002.1.51 
[15] 
Meiyue Jiang, Juncheng Wei. $2\pi$Periodic selfsimilar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 785803. doi: 10.3934/dcds.2016.36.785 
[16] 
Jochen Merker, Aleš Matas. Positivity of selfsimilar solutions of doubly nonlinear reactiondiffusion equations. Conference Publications, 2015, 2015 (special) : 817825. doi: 10.3934/proc.2015.0817 
[17] 
Adrien Blanchet, Philippe Laurençot. Finite mass selfsimilar blowingup solutions of a chemotaxis system with nonlinear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 4760. doi: 10.3934/cpaa.2012.11.47 
[18] 
Zoran Grujić. Regularity of forwardintime selfsimilar solutions to the 3D NavierStokes equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 837843. doi: 10.3934/dcds.2006.14.837 
[19] 
Francis Hounkpe, Gregory Seregin. An approximation of forward selfsimilar solutions to the 3D NavierStokes system. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 48234846. doi: 10.3934/dcds.2021059 
[20] 
Rostislav Grigorchuk, Volodymyr Nekrashevych. Selfsimilar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323370. doi: 10.3934/jmd.2007.1.323 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]