# American Institute of Mathematical Sciences

April  1997, 3(2): 207-216. doi: 10.3934/dcds.1997.3.207

## Existence of stable and unstable periodic solutions for semilinear parabolic problems

 1 School of Mathematics and Statistics, University of Sydney, N.S.W. 2006, Australia 2 Department of Mathematics, Yokohama National University, 156 Tokiwadai Hodogaya-ku - Yokohama

Received  October 1996 Published  January 1997

In this paper, we show the existence of stable and unstable $T-$periodic solutions for a semilinear parabolic equation

$\frac{\partial u}{\partial t} - \Delta u = g(x,u) + h( t, x ),\quad \text{in} \quad (0,T) \times \Omega$

$u=0 ,\quad \text{on}\quad (0,T) \times \partial \Omega$

$u(0) = u(T),\quad \text{in} \quad \overline \Omega$

where $\Omega \subset R^N$ is a bounded domain with a smooth boundary, $g:\overline{\Omega} \times R \rightarrow R$ is a continuous function such that $g(x,\cdot )$ has a superlinear growth for each $x \in \overline{\Omega}$ and $h:(0,T) \times \Omega \to R$ is a continuous function.

Citation: E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207
 [1] Mourad Choulli, El Maati Ouhabaz, Masahiro Yamamoto. Stable determination of a semilinear term in a parabolic equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 447-462. doi: 10.3934/cpaa.2006.5.447 [2] Charles A. Stuart. Stability analysis for a family of degenerate semilinear parabolic problems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5297-5337. doi: 10.3934/dcds.2018234 [3] Flank D. M. Bezerra, Alexandre N. Carvalho, Marcelo J. D. Nascimento. Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4221-4255. doi: 10.3934/dcdsb.2020095 [4] Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911 [5] Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313 [6] Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451 [7] Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797 [8] G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205 [9] Mickaël D. Chekroun. Topological instabilities in families of semilinear parabolic problems subject to nonlinear perturbations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3723-3753. doi: 10.3934/dcdsb.2018075 [10] Alexandre Nolasco de Carvalho, Marcelo J. D. Nascimento. Singularly non-autonomous semilinear parabolic problems with critical exponents. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 449-471. doi: 10.3934/dcdss.2009.2.449 [11] Sébastien Court, Karl Kunisch, Laurent Pfeiffer. Hybrid optimal control problems for a class of semilinear parabolic equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1031-1060. doi: 10.3934/dcdss.2018060 [12] J.-P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 341-370. doi: 10.3934/dcds.1997.3.341 [13] V. Carmona, E. Freire, E. Ponce, F. Torres. The continuous matching of two stable linear systems can be unstable. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 689-703. doi: 10.3934/dcds.2006.16.689 [14] Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555 [15] Thierry Gallay, Guido Schneider, Hannes Uecker. Stable transport of information near essentially unstable localized structures. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 349-390. doi: 10.3934/dcdsb.2004.4.349 [16] Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 [17] Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139 [18] Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267 [19] Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control and Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018 [20] Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems and Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

2020 Impact Factor: 1.392

## Metrics

• HTML views (0)
• Cited by (1)

• on AIMS