October  1997, 3(4): 531-540. doi: 10.3934/dcds.1997.3.531

A simple construction of inertial manifolds under time discretization

1. 

Research Center for Applied Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  January 1996 Published  July 1997

In this article, we obtain the existence of inertial manifolds under time discretization based on their invariant property. In [1], the authors gave their existence by finding the fixed point of some inertial mapping defined by a sum of infinite series:

$ T_h^0\Phi(p)=\sum_{k=1}^{\infty}R(h)^kQF(p^{-k}+\Phi(p^{-k})) $

where $p^{-k}=(S^h_\Phi)^{-k}(p)$, see [1] for detailed definition. Here we get the existence by solving the following equation about $\Phi$:

$\Phi(S_\Phi^h(p))=R(h)[\Phi(p)+hQF(p+\Phi(p))] \mbox{ for }\forall p\in PH.$

See section 1 for further explanation which describes just the invariant property of inertial manifolds. Finally we prove the $C^1$ smoothness of inertial manifolds.

Citation: Changbing Hu, Kaitai Li. A simple construction of inertial manifolds under time discretization. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 531-540. doi: 10.3934/dcds.1997.3.531
[1]

Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1429-1442. doi: 10.3934/cpaa.2008.7.1429

[2]

T. Colin, Géraldine Ebrard, Gérard Gallice. Semi-discretization in time for nonlinear Zakharov waves equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 263-282. doi: 10.3934/dcdsb.2009.11.263

[3]

Pierluigi Colli, Shunsuke Kurima. Time discretization of a nonlinear phase field system in general domains. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3161-3179. doi: 10.3934/cpaa.2019142

[4]

Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic and Related Models, 2019, 12 (1) : 59-77. doi: 10.3934/krm.2019003

[5]

Matthieu Hillairet, Alexei Lozinski, Marcela Szopos. On discretization in time in simulations of particulate flows. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 935-956. doi: 10.3934/dcdsb.2011.15.935

[6]

Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213

[7]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[8]

Olivier Goubet. Approximate inertial manifolds for a weakly damped nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 503-530. doi: 10.3934/dcds.1997.3.503

[9]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[10]

Philippe Michel, Bhargav Kumar Kakumani. GRE methods for nonlinear model of evolution equation and limited ressource environment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6653-6673. doi: 10.3934/dcdsb.2019161

[11]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[12]

Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917

[13]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

[14]

Akio Ito, Noriaki Yamazaki, Nobuyuki Kenmochi. Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Conference Publications, 1998, 1998 (Special) : 327-349. doi: 10.3934/proc.1998.1998.327

[15]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009

[16]

Peter E. Kloeden, Björn Schmalfuss. Lyapunov functions and attractors under variable time-step discretization. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 163-172. doi: 10.3934/dcds.1996.2.163

[17]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[18]

Andy Hammerlindl, Bernd Krauskopf, Gemma Mason, Hinke M. Osinga. Determining the global manifold structure of a continuous-time heterodimensional cycle. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022008

[19]

Abdulkarim Hassan Ibrahim, Poom Kumam, Min Sun, Parin Chaipunya, Auwal Bala Abubakar. Projection method with inertial step for nonlinear equations: Application to signal recovery. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021173

[20]

Víctor Manuel Jiménez, Manuel de León. The evolution equation: An application of groupoids to material evolution. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022001

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]