-
Previous Article
A global existence theorem for two coupled semilinear diffusion equations from climate modeling
- DCDS Home
- This Issue
-
Next Article
Approximate inertial manifolds for a weakly damped nonlinear Schrödinger equation
A simple construction of inertial manifolds under time discretization
1. | Research Center for Applied Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China |
$ T_h^0\Phi(p)=\sum_{k=1}^{\infty}R(h)^kQF(p^{-k}+\Phi(p^{-k})) $
where $p^{-k}=(S^h_\Phi)^{-k}(p)$, see [1] for detailed definition. Here we get the existence by solving the following equation about $\Phi$:
$\Phi(S_\Phi^h(p))=R(h)[\Phi(p)+hQF(p+\Phi(p))] \mbox{ for }\forall p\in PH.$
See section 1 for further explanation which describes just the invariant property of inertial manifolds. Finally we prove the $C^1$ smoothness of inertial manifolds.
[1] |
Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1429-1442. doi: 10.3934/cpaa.2008.7.1429 |
[2] |
T. Colin, Géraldine Ebrard, Gérard Gallice. Semi-discretization in time for nonlinear Zakharov waves equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 263-282. doi: 10.3934/dcdsb.2009.11.263 |
[3] |
Pierluigi Colli, Shunsuke Kurima. Time discretization of a nonlinear phase field system in general domains. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3161-3179. doi: 10.3934/cpaa.2019142 |
[4] |
Orazio Muscato, Wolfgang Wagner. A stochastic algorithm without time discretization error for the Wigner equation. Kinetic and Related Models, 2019, 12 (1) : 59-77. doi: 10.3934/krm.2019003 |
[5] |
Matthieu Hillairet, Alexei Lozinski, Marcela Szopos. On discretization in time in simulations of particulate flows. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 935-956. doi: 10.3934/dcdsb.2011.15.935 |
[6] |
Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 |
[7] |
Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543 |
[8] |
Olivier Goubet. Approximate inertial manifolds for a weakly damped nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 503-530. doi: 10.3934/dcds.1997.3.503 |
[9] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[10] |
Philippe Michel, Bhargav Kumar Kakumani. GRE methods for nonlinear model of evolution equation and limited ressource environment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6653-6673. doi: 10.3934/dcdsb.2019161 |
[11] |
Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677 |
[12] |
Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917 |
[13] |
Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027 |
[14] |
Akio Ito, Noriaki Yamazaki, Nobuyuki Kenmochi. Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Conference Publications, 1998, 1998 (Special) : 327-349. doi: 10.3934/proc.1998.1998.327 |
[15] |
Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009 |
[16] |
Peter E. Kloeden, Björn Schmalfuss. Lyapunov functions and attractors under variable time-step discretization. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 163-172. doi: 10.3934/dcds.1996.2.163 |
[17] |
Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265 |
[18] |
Andy Hammerlindl, Bernd Krauskopf, Gemma Mason, Hinke M. Osinga. Determining the global manifold structure of a continuous-time heterodimensional cycle. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022008 |
[19] |
Abdulkarim Hassan Ibrahim, Poom Kumam, Min Sun, Parin Chaipunya, Auwal Bala Abubakar. Projection method with inertial step for nonlinear equations: Application to signal recovery. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021173 |
[20] |
Víctor Manuel Jiménez, Manuel de León. The evolution equation: An application of groupoids to material evolution. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022001 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]