-
Previous Article
Nonexistence of positive solutions for some quasilinear elliptic equations in strip-like domains
- DCDS Home
- This Issue
-
Next Article
A simple construction of inertial manifolds under time discretization
A global existence theorem for two coupled semilinear diffusion equations from climate modeling
1. | Department of Mathematics, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany |
[1] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[2] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[3] |
Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure and Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23 |
[4] |
Wenxiong Chen, Congming Li, Eric S. Wright. On a nonlinear parabolic system-modeling chemical reactions in rivers. Communications on Pure and Applied Analysis, 2005, 4 (4) : 889-899. doi: 10.3934/cpaa.2005.4.889 |
[5] |
Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (2) : 487-503. doi: 10.3934/cpaa.2007.6.487 |
[6] |
Brahim Allal, Abdelkarim Hajjaj, Jawad Salhi, Amine Sbai. Boundary controllability for a coupled system of degenerate/singular parabolic equations. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021055 |
[7] |
Ka Kit Tung. Simple climate modeling. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 651-660. doi: 10.3934/dcdsb.2007.7.651 |
[8] |
Inez Fung. Challenges of climate modeling. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 543-551. doi: 10.3934/dcdsb.2007.7.543 |
[9] |
Yang Liu, Wenke Li. A class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4367-4381. doi: 10.3934/dcdss.2021112 |
[10] |
Louis Tebou. Stabilization of some coupled hyperbolic/parabolic equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1601-1620. doi: 10.3934/dcdsb.2010.14.1601 |
[11] |
Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557 |
[12] |
Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119 |
[13] |
Florian Caro, Bilal Saad, Mazen Saad. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 191-205. doi: 10.3934/dcdss.2014.7.191 |
[14] |
H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315 |
[15] |
Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612 |
[16] |
Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451 |
[17] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[18] |
Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417 |
[19] |
Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 |
[20] |
Georg Hetzer. Global existence for a functional reaction-diffusion problem from climate modeling. Conference Publications, 2011, 2011 (Special) : 660-671. doi: 10.3934/proc.2011.2011.660 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]