-
Previous Article
Scattering in domains with many small obstacles
- DCDS Home
- This Issue
-
Next Article
Existence results for general systems of differential equations on one-dimensional networks and prewavelets approximation
Minimal sets of periods for torus maps
1. | Department of Mathematics, Peking University, Beijing 100871, China |
2. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain |
[1] |
Deissy M. S. Castelblanco. Restrictions on rotation sets for commuting torus homeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5257-5266. doi: 10.3934/dcds.2016030 |
[2] |
Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183 |
[3] |
Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063 |
[4] |
Simon Lloyd. On the Closing Lemma problem for the torus. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951 |
[5] |
Peter Seibt. A period formula for torus automorphisms. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1029-1048. doi: 10.3934/dcds.2003.9.1029 |
[6] |
Aaron W. Brown. Smooth stabilizers for measures on the torus. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 43-58. doi: 10.3934/dcds.2015.35.43 |
[7] |
Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287 |
[8] |
Pedro Duarte, Silvius Klein. Topological obstructions to dominated splitting for ergodic translations on the higher dimensional torus. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5379-5387. doi: 10.3934/dcds.2018237 |
[9] |
Mostapha Benhenda. Nonstandard smooth realization of translations on the torus. Journal of Modern Dynamics, 2013, 7 (3) : 329-367. doi: 10.3934/jmd.2013.7.329 |
[10] |
M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343 |
[11] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[12] |
Henk W. Broer, Carles Simó, Renato Vitolo. Chaos and quasi-periodicity in diffeomorphisms of the solid torus. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 871-905. doi: 10.3934/dcdsb.2010.14.871 |
[13] |
Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233 |
[14] |
Luigi C. Berselli, Argus Adrian Dunca, Roger Lewandowski, Dinh Duong Nguyen. Modeling error of $ \alpha $-models of turbulence on a two-dimensional torus. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4613-4643. doi: 10.3934/dcdsb.2020305 |
[15] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081 |
[16] |
Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253 |
[17] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[18] |
M. Burak Erdoğan, Nikolaos Tzirakis. Long time dynamics for forced and weakly damped KdV on the torus. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2669-2684. doi: 10.3934/cpaa.2013.12.2669 |
[19] |
Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1 |
[20] |
Ser Peow Tan, Yan Loi Wong and Ying Zhang. The SL(2, C) character variety of a one-holed torus. Electronic Research Announcements, 2005, 11: 103-110. |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]