-
Previous Article
Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space
- DCDS Home
- This Issue
-
Next Article
Longtime behavior of a homogenized model in viscoelastodynamics
Periodic systems for the higher-dimensional Laplace transformation
1. | Department of Mathematics & Statistics, McGill University, Montréal, Québec H3A 2K6, Canada |
2. | Departamento de Matemática, Universidade de Brasília, Brasília, DF 70910, Brazil |
$ y_{,k\l}+a_{k\l}^ky_{,k}+a_{k\l}^\ly_{,\l}+c_{k\l}y=0\ , \quad 1\le k\ne\l\le n\ , $
where the coefficients are smooth functions satisfying certain integrability conditions. Generalizing the classical theory of second order linear hyperbolic partial differential equation in the plane, we consider higher-dimensional Laplace invariants of a system of the above class. These invariants are characterized as functions which must satisfy a set of differential equations. We establish a normal form for any system of the above class in terms of these invariants. Moreover, we solve the periodicity problem for the higher-dimensional Laplace transformation applied to such systems, generalizing a classical theorem of Darboux which shows that for $n=2$ a 1-periodic equation is equivalent to the Klein-Gordon equation.
[1] |
E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1 |
[2] |
Chun-xiang Guo, Dong Cai, Yu-yang Tan. Outsourcing contract design for the green transformation of manufacturing systems under asymmetric information. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021158 |
[3] |
Lyndsey Clark. The $\beta$-transformation with a hole. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249 |
[4] |
Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049 |
[5] |
P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213 |
[6] |
Miroslav Bulíček, Annegret Glitzky, Matthias Liero. Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 697-713. doi: 10.3934/dcdss.2017035 |
[7] |
Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483 |
[8] |
Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331 |
[9] |
J. R. Ward. Periodic solutions of first order systems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 381-389. doi: 10.3934/dcds.2013.33.381 |
[10] |
Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010 |
[11] |
Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905 |
[12] |
Adriana Buică, Jean–Pierre Françoise, Jaume Llibre. Periodic solutions of nonlinear periodic differential systems with a small parameter. Communications on Pure and Applied Analysis, 2007, 6 (1) : 103-111. doi: 10.3934/cpaa.2007.6.103 |
[13] |
Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367 |
[14] |
D. Ruiz, J. R. Ward. Some notes on periodic systems with linear part at resonance. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 337-350. doi: 10.3934/dcds.2004.11.337 |
[15] |
Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097 |
[16] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[17] |
Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109 |
[18] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
[19] |
Alexander Krasnosel'skii. Resonant forced oscillations in systems with periodic nonlinearities. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 239-254. doi: 10.3934/dcds.2013.33.239 |
[20] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]