January  1998, 4(1): 43-54. doi: 10.3934/dcds.1998.4.43

Some properties of ergodic attractors for controlled dynamical systems

1. 

Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, United States

2. 

Department of Mathematics, Tokyo Metropolitan University, Hachioji-shi,Tokyo 192-03, Japan

Received  March 1996 Revised  April 1997 Published  October 1997

We define controlled dynamical systems and give a few of characterizations of ergodic attractors of controlled dynamical systems.
Citation: Mariko Arisawa, Hitoshi Ishii. Some properties of ergodic attractors for controlled dynamical systems. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 43-54. doi: 10.3934/dcds.1998.4.43
[1]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[2]

Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135

[3]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[4]

Kazuyuki Yagasaki. Optimal control of the SIR epidemic model based on dynamical systems theory. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021144

[5]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[6]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[7]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[8]

Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585

[9]

Masatoshi Shiino, Keiji Okumura. Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena. Conference Publications, 2013, 2013 (special) : 685-694. doi: 10.3934/proc.2013.2013.685

[10]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[11]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[12]

Victor Ayala, Adriano Da Silva, Luiz A. B. San Martin. Control systems on flag manifolds and their chain control sets. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2301-2313. doi: 10.3934/dcds.2017101

[13]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1103-1114. doi: 10.3934/dcdss.2020065

[14]

Michel Duprez, Guillaume Olive. Compact perturbations of controlled systems. Mathematical Control & Related Fields, 2018, 8 (2) : 397-410. doi: 10.3934/mcrf.2018016

[15]

Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519

[16]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[17]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[18]

Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803

[19]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[20]

Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]