-
Previous Article
Smooth solution of the generalized system of ferro-magnetic chain
- DCDS Home
- This Issue
- Next Article
A difference-differential analogue of the Burgers equations and some models of economic development
1. | Université Pierre et marie Curie, Paris, France |
2. | CEMI, Academy of Science, Moscow, Russian Federation |
$dF_n$/$dt=\varphi(F_n)(F_{n-1}-F_n)\quad\qquad\qquad (\star)$
where, for every $t, \{F_n(t), n=0,1,2,\ldots\}$ is a probability distribution function, and $\varphi$ is a positive function on $[0, 1]$. The equation $(\star)$ arose as a description of industrial economic development taking into accout processes of creation and propagation of new technologies. The paper contains a survey of the earlier received results including a multi-dimensional generalization and an application to the economic growth theory.
If $\varphi$ is decreasing then solutions of Cauchy problem for $(\star)$ approach to a family of wave-trains. We show that diffusion-wise asymptotic behavior takes place if $\varphi$ is increasing. For the nonmonotonic case a general hypothesis about asymtotic behavior is formulated and an analogue of a Weinberger's (1990) theorem is proved. It is argued that the equation can be considereded as an analogue of Burgers equation.
[1] |
Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041 |
[2] |
A. Kh. Khanmamedov. Long-time behaviour of doubly nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1373-1400. doi: 10.3934/cpaa.2009.8.1373 |
[3] |
H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119 |
[4] |
A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185 |
[5] |
Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025 |
[6] |
Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557 |
[7] |
Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15 |
[8] |
Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110 |
[9] |
Dongxue Yan, Xianlong Fu. Long-time behavior of a size-structured population model with diffusion and delayed birth process. Evolution Equations and Control Theory, 2022, 11 (3) : 895-923. doi: 10.3934/eect.2021030 |
[10] |
Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541 |
[11] |
Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465 |
[12] |
Yang Liu. Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28 (1) : 311-326. doi: 10.3934/era.2020018 |
[13] |
Shan Ma, Chunyou Sun. Long-time behavior for a class of weighted equations with degeneracy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1889-1902. doi: 10.3934/dcds.2020098 |
[14] |
Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873 |
[15] |
Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675 |
[16] |
Mingming Chen, Xianguo Geng, Kedong Wang. Long-time asymptotics for the modified complex short pulse equation. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022060 |
[17] |
Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic and Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251 |
[18] |
Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767 |
[19] |
Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703 |
[20] |
C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]