Advanced Search
Article Contents
Article Contents

Connecting equilibria by blow-up solutions

Abstract Related Papers Cited by
  • We study heteroclinic connections in a nonlinear heat equation that involves blow-up. More precisely we discuss the existence of $L^1$ connections among equilibrium solutions. By an $L^1$-connection from an equilibrium $\phi^{-1}$ to an equilibrium $\phi^+$ we mean a function $u$($.,t$) which is a classical solution on the interval $(-\infty,T)$ for some $T\in \mathbb R$ and blows up at $t=T$ but continues to exist in the space $L^1$ in a certain weak sense for $t\in [T,\infty)$ and satisfies $u$($.,t$)$\to \phi^\pm$ as $t\to\pm\infty$ in a suitable sense. The main tool in our analysis is the zero number argument; namely to count the number of intersections between the graph of a given solution and that of various specific solutions.
    Mathematics Subject Classification: 35K57, 35B40, 58F39.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint