July  2000, 6(3): 609-624. doi: 10.3934/dcds.2000.6.609

Center-focus and isochronous center problems for discontinuous differential equations

1. 

Dept. de Matemàtiques i Informàtica, Universitat de les Illes Balears, Facultat de ciències, 07071, Palma de Mallorca, Spain, Spain

2. 

Dept. de Matemàtiques, Universitat Autónoma de Barcelona, Edifici C, 08193 Bel-laterra, Barcelona, Spain

Received  October 1999 Revised  April 2000 Published  April 2000

The study of the center focus problem and the isochronicity problem for differential equations with a line of discontinuities is usually done by computing the whole return map as the composition of the two maps associated to the two smooth differential equations. This leads to large formulas which usually are treated with algebraic manipulators. In this paper we approach to this problem from a more theoretical point of view. The results that we obtain relate the order of degeneracy of the critical point of the discontinuous differential equations with the order of degeneracy of the two smooth component differential equations. Finally we apply them to some families of examples.
Citation: B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609
[1]

Wilker Fernandes, Viviane Pardini Valério, Patricia Tempesta. Isochronicity of bi-centers for symmetric quartic differential systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3991-4006. doi: 10.3934/dcdsb.2021215

[2]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[3]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[4]

Yongjian Liu, Zhenhai Liu, Dumitru Motreanu. Differential inclusion problems with convolution and discontinuous nonlinearities. Evolution Equations and Control Theory, 2020, 9 (4) : 1057-1071. doi: 10.3934/eect.2020056

[5]

Jaume Llibre. Limit cycles of continuous piecewise differential systems separated by a parabola and formed by a linear center and a quadratic center. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022034

[6]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[7]

Jaume Llibre, Roland Rabanal. Center conditions for a class of planar rigid polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1075-1090. doi: 10.3934/dcds.2015.35.1075

[8]

Jun Shen, Kening Lu, Bixiang Wang. Convergence and center manifolds for differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4797-4840. doi: 10.3934/dcds.2019196

[9]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[10]

Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the generalized short pulse equation. Evolution Equations and Control Theory, 2019, 8 (4) : 737-753. doi: 10.3934/eect.2019036

[11]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems and Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[12]

Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1835-1858. doi: 10.3934/dcdsb.2020005

[13]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[14]

Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111

[15]

Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136

[16]

Amin Boumenir, Vu Kim Tuan, Nguyen Hoang. The recovery of a parabolic equation from measurements at a single point. Evolution Equations and Control Theory, 2018, 7 (2) : 197-216. doi: 10.3934/eect.2018010

[17]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[18]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic and Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[19]

Flavia Antonacci, Marco Degiovanni. On the Euler equation for minimal geodesics on Riemannian manifoldshaving discontinuous metrics. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 833-842. doi: 10.3934/dcds.2006.15.833

[20]

Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8 (3) : 727-744. doi: 10.3934/nhm.2013.8.727

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (165)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]