-
Previous Article
The Schrödinger equation with singular time-dependent potentials
- DCDS Home
- This Issue
-
Next Article
Symmetry results for functions yielding best constants in Sobolev-type inequalities
Multipliers of homoclinic orbits on surfaces and characteristics of associated invariant sets
1. | IICO-UASLP, A. Obregón 64, 78000 San Luis Postosí, SLP |
2. | Department of Mathematics, Ohio University, Athens, OH 45701, United States |
[1] |
Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907 |
[2] |
Chen-Chang Peng, Kuan-Ju Chen. Existence of transversal homoclinic orbits in higher dimensional discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1181-1197. doi: 10.3934/dcdsb.2010.14.1181 |
[3] |
Flaviano Battelli, Ken Palmer. Transversal periodic-to-periodic homoclinic orbits in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 367-387. doi: 10.3934/dcdsb.2010.14.367 |
[4] |
B. Campos, P. Vindel. Transversal intersections of invariant manifolds of NMS flows on $S^{3}$. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 41-56. doi: 10.3934/dcds.2012.32.41 |
[5] |
Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911 |
[6] |
Michael Hochman. Smooth symmetries of $\times a$-invariant sets. Journal of Modern Dynamics, 2018, 13: 187-197. doi: 10.3934/jmd.2018017 |
[7] |
Leonardo Mora. Homoclinic bifurcations, fat attractors and invariant curves. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1133-1148. doi: 10.3934/dcds.2003.9.1133 |
[8] |
Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1 |
[9] |
Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119 |
[10] |
Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga, Katsutoshi Shinohara. How to identify a hyperbolic set as a blender. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6815-6836. doi: 10.3934/dcds.2020295 |
[11] |
S. Bautista, C. Morales, M. J. Pacifico. On the intersection of homoclinic classes on singular-hyperbolic sets. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 761-775. doi: 10.3934/dcds.2007.19.761 |
[12] |
Martín Sambarino, José L. Vieitez. Robustly expansive homoclinic classes are generically hyperbolic. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1325-1333. doi: 10.3934/dcds.2009.24.1325 |
[13] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[14] |
Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811 |
[15] |
Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185 |
[16] |
Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133 |
[17] |
Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371 |
[18] |
Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94. |
[19] |
Lennard F. Bakker, Pedro Martins Rodrigues. A profinite group invariant for hyperbolic toral automorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1965-1976. doi: 10.3934/dcds.2012.32.1965 |
[20] |
Lorenzo J. Díaz, Jorge Rocha. How do hyperbolic homoclinic classes collide at heterodimensional cycles?. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 589-627. doi: 10.3934/dcds.2007.17.589 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]