October  2000, 6(4): 809-828. doi: 10.3934/dcds.2000.6.809

Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

2. 

Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n, 33007, Oviedo, Spain, Spain

Received  June 1999 Revised  June 2000 Published  August 2000

Recently, in [9] we characterized the set of planar homogeneous vector fields that are structurally stable and we obtained the exact number of the topological equivalence classes. Furthermore, we gave a first extension of the Hartman-Grobman Theorem for planar vector fields. In this paper we study the structural stability in the set $H_{m,n}$ of planar semi-homogeneous vector fields $X = (P_m,Q_n)$, where $P_m$ and $Q_n$ are homogeneous polynomial of degree $m$ and $n$ respectively, and $0 < m < n$. Unlike the planar homogeneous vector fields, the semi-homogeneous ones can have limit cycles, which prevents to characterize completely those planar semi-homogeneous vector fields that are structurally stable. Thus, in the first part of this paper we will study the local structural stability at the origin and at infinity for the vector fields in $H_{m,n}$. As a consequence of these local results, we will complete the extension of the Hartman-Grobman Theorem to the nonlinear planar vector fields. In the second half of this paper we define a subset $\Delta_{m,n}$ that is dense in $H_{m,n}$ and whose elements are structurally stable. We prove that there exist vector fields in $\Delta_{m,n}$ that have at least $(m+n)/2$ hyperbolic limit cycles.
Citation: Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809
[1]

Xiao-Song Yang. Index sums of isolated singular points of positive vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1033-1039. doi: 10.3934/dcds.2009.25.1033

[2]

Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015

[3]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[4]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[5]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[6]

Lev M. Lerman, Elena V. Gubina. Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1341-1367. doi: 10.3934/dcdss.2020076

[7]

Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415

[8]

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010

[9]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 229-243. doi: 10.3934/dcdsb.2021038

[10]

Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387

[11]

Zecen He, Haihua Liang, Xiang Zhang. Limit cycles and global dynamic of planar cubic semi-quasi-homogeneous systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 421-441. doi: 10.3934/dcdsb.2021049

[12]

Magdalena Caubergh, Freddy Dumortier, Stijn Luca. Cyclicity of unbounded semi-hyperbolic 2-saddle cycles in polynomial Lienard systems. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 963-980. doi: 10.3934/dcds.2010.27.963

[13]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure and Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[14]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[15]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[16]

Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure and Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725

[17]

Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073

[18]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems and Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[19]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[20]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure and Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (8)

[Back to Top]