-
Previous Article
Non-uniformly expanding dynamics: Stability from a probabilistic viewpoint
- DCDS Home
- This Issue
-
Next Article
Positivity of Paneitz operators
Maximum principles for the primitive equations of the atmosphere
1. | Institute for Scientific Computing and Applied Mathematics, Indiana University, Rawles Hall, 831 E. Third Street, Bloomington, IN 47405, United States, United States |
[1] |
Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160 |
[2] |
Bo You. Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics. Evolution Equations and Control Theory, 2021, 10 (4) : 937-963. doi: 10.3934/eect.2020097 |
[3] |
Donatella Donatelli, Nóra Juhász. The primitive equations of the polluted atmosphere as a weak and strong limit of the 3D Navier-Stokes equations in downwind-matching coordinates. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2859-2892. doi: 10.3934/dcds.2022002 |
[4] |
A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373 |
[5] |
Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347 |
[6] |
Xiaoming He, Xin Zhao, Wenming Zou. Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4387-4399. doi: 10.3934/cpaa.2020200 |
[7] |
Wenmin Sun, Jiguang Bao. New maximum principles for fully nonlinear ODEs of second order. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 813-823. doi: 10.3934/dcds.2007.19.813 |
[8] |
Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880 |
[9] |
Roger Temam, D. Wirosoetisno. Exponential approximations for the primitive equations of the ocean. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 425-440. doi: 10.3934/dcdsb.2007.7.425 |
[10] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[11] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[12] |
Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305 |
[13] |
T. Tachim Medjo. Robust control problems for primitive equations of the ocean. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 769-788. doi: 10.3934/dcdsb.2011.15.769 |
[14] |
Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198 |
[15] |
G. A. Leonov. Generalized Lorenz Equations for Acoustic-Gravity Waves in the Atmosphere. Attractors Dimension, Convergence and Homoclinic Trajectories. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2253-2267. doi: 10.3934/cpaa.2017111 |
[16] |
Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087 |
[17] |
Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159 |
[18] |
T. Tachim Medjo. The exponential behavior of the stochastic primitive equations in two dimensional space with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 177-197. doi: 10.3934/dcdsb.2010.14.177 |
[19] |
Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181 |
[20] |
Makram Hamouda, Chang-Yeol Jung, Roger Temam. Boundary layers for the 2D linearized primitive equations. Communications on Pure and Applied Analysis, 2009, 8 (1) : 335-359. doi: 10.3934/cpaa.2009.8.335 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]