Advanced Search
Article Contents
Article Contents

Infinite-dimensional complex dynamics: A quantum random walk

Abstract Related Papers Cited by
  • We describe a unitary operator $U(\alpha)$ on L2$(\mathbb T)$, depending on a real parameter $\alpha$, that is a quantization of a simple piecewise holomorphic dynamical system on the cylinder $\mathbf C^* \cong \mathbb T \times \mathbb R$. We give results describing the spectrum of $U(\alpha)$ in terms of the diophantine properties of $\alpha$, and use these results to compare the quantum to classical dynamics. In particular, we prove that for almost all $\alpha$, the quantum dynamics localizes, whereas the classical dynamics does not. We also give a condition implying that the quantum dynamics does not localize.
    Mathematics Subject Classification: Primary: 37N20.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint