January  2001, 7(1): 61-84. doi: 10.3934/dcds.2001.7.61

Arnold diffusion in perturbations of analytic integrable Hamiltonian systems

1. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via, 585, 08007 Barcelona, Spain

2. 

Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Ed-C3, Jordi Girona, 1-3, 08034 Barcelona, Spain

Received  June 1999 Revised  October 2000 Published  November 2000

Given an analytic integrable Hamiltonian with three or more degrees of freedom, we construct, arbitrarily close to it, an analytic perturbation with transition chains whose lengths only depend on the unperturbed Hamiltonian. Then we deduce that the perturbed system has Arnold diffusion. We provide the technical details of the tools we use.
Citation: Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61
[1]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[2]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[3]

Jacky Cresson. The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 787-800. doi: 10.3934/dcds.2001.7.787

[4]

Guowei Yu. Ray and heteroclinic solutions of Hamiltonian systems with 2 degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4769-4793. doi: 10.3934/dcds.2013.33.4769

[5]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[6]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[7]

Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795

[8]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[9]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[10]

Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64

[11]

Claude Froeschlé, Massimiliano Guzzo, Elena Lega. First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 687-698. doi: 10.3934/dcdsb.2005.5.687

[12]

Qihuai Liu, Pedro J. Torres. Orbital dynamics on invariant sets of contact Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021297

[13]

Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451

[14]

Shengqing Hu. Persistence of invariant tori for almost periodically forced reversible systems. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4497-4518. doi: 10.3934/dcds.2020188

[15]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[16]

Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569

[17]

Amadeu Delshams, Pere Gutiérrez, Tere M. Seara. Exponentially small splitting for whiskered tori in Hamiltonian systems: flow-box coordinates and upper bounds. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 785-826. doi: 10.3934/dcds.2004.11.785

[18]

Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757

[19]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[20]

Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]