July  2001, 7(3): 643-657. doi: 10.3934/dcds.2001.7.643

Nodal parametrisation of analytic attractors

1. 

Trinity College, Cambridge CB2 1TQ, United Kingdom

2. 

Department of Mathematics,, The University of Southern California, Los Angeles, CA 90089-1113

3. 

Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

Received  July 2000 Revised  December 2000 Published  April 2001

Friz and Robinson showed that analytic global attractors consisting of periodic functions can be parametrised using the values of the solution at a finite number of points throughout the domain, a result applicable to the $2$d Navier-Stokes equations with periodic boundary conditions. In this paper we extend the argument to cover any attractor consisting of analytic functions; in particular we are now able to treat the $2$d Navier-Stokes equations with Dirichlet boundary conditions.
Citation: Peter K. Friz, I. Kukavica, James C. Robinson. Nodal parametrisation of analytic attractors. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 643-657. doi: 10.3934/dcds.2001.7.643
[1]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[2]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations and Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105

[3]

Sergey Popov, Volker Reitmann. Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 249-267. doi: 10.3934/dcds.2014.34.249

[4]

Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155

[5]

Ahmad Al-Salman, Ziyad AlSharawi, Sadok Kallel. Extension, embedding and global stability in two dimensional monotone maps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4257-4276. doi: 10.3934/dcdsb.2020096

[6]

Andy Hammerlindl, Bernd Krauskopf, Gemma Mason, Hinke M. Osinga. Determining the global manifold structure of a continuous-time heterodimensional cycle. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022008

[7]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[8]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079

[9]

Sergey Dashkovskiy, Oleksiy Kapustyan, Iryna Romaniuk. Global attractors of impulsive parabolic inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1875-1886. doi: 10.3934/dcdsb.2017111

[10]

Rodrigo Samprogna, Cláudia B. Gentile Moussa, Tomás Caraballo, Karina Schiabel. Trajectory and global attractors for generalized processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3995-4020. doi: 10.3934/dcdsb.2019047

[11]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[12]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks and Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[13]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[14]

Jörg Härterich, Matthias Wolfrum. Describing a class of global attractors via symbol sequences. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 531-554. doi: 10.3934/dcds.2005.12.531

[15]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[16]

Tomás Caraballo, Juan C. Jara, José A. Langa, José Valero. Morse decomposition of global attractors with infinite components. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2845-2861. doi: 10.3934/dcds.2015.35.2845

[17]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[18]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[19]

Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243

[20]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]