-
Previous Article
Topological sequence entropy of $\omega$–limit sets of interval maps
- DCDS Home
- This Issue
-
Next Article
On subharmonics bifurcation in equations with homogeneous nonlinearities
Global existence and uniqueness for a hyperbolic system with free boundary
1. | Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China |
2. | Department of Mathematics, South China Normal University, Guangzhou 510631, China |
[1] |
Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121 |
[2] |
Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281 |
[3] |
Lincoln Chayes, Inwon C. Kim. The supercooled Stefan problem in one dimension. Communications on Pure and Applied Analysis, 2012, 11 (2) : 845-859. doi: 10.3934/cpaa.2012.11.845 |
[4] |
Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741 |
[5] |
Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3011-3033. doi: 10.3934/jimo.2019091 |
[6] |
Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739 |
[7] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[8] |
Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379 |
[9] |
Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure and Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591 |
[10] |
Karl P. Hadeler. Stefan problem, traveling fronts, and epidemic spread. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 417-436. doi: 10.3934/dcdsb.2016.21.417 |
[11] |
Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 |
[12] |
Jong-Shenq Guo, Bo-Chih Huang. Hyperbolic quenching problem with damping in the micro-electro mechanical system device. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 419-434. doi: 10.3934/dcdsb.2014.19.419 |
[13] |
Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2173-2187. doi: 10.3934/dcdsb.2021128 |
[14] |
Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 |
[15] |
Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77 |
[16] |
Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045 |
[17] |
Huiling Li, Xiaoliu Wang, Xueyan Lu. A nonlinear Stefan problem with variable exponent and different moving parameters. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1671-1698. doi: 10.3934/dcdsb.2019246 |
[18] |
Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216 |
[19] |
Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357 |
[20] |
V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]