
Previous Article
Some Dirichlet problems with bad coercivity
 DCDS Home
 This Issue

Next Article
Nonvariational elliptic systems
Solitons and Bohmian mechanics
1.  Dip. di Matematica Applicata, Università di Pisa, Via Bonanno Pisano 25/B, Italy 
[1] 
John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 129. doi: 10.3934/eect.2019001 
[2] 
José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 57215741. doi: 10.3934/dcds.2016051 
[3] 
Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems  B, 2002, 2 (3) : 313378. doi: 10.3934/dcdsb.2002.2.313 
[4] 
José R. Quintero. Nonlinear stability of solitary waves for a 2d BenneyLuke equation. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 203218. doi: 10.3934/dcds.2005.13.203 
[5] 
Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete and Continuous Dynamical Systems  S, 2016, 9 (6) : 16291645. doi: 10.3934/dcdss.2016067 
[6] 
H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 709717. doi: 10.3934/dcds.2004.10.709 
[7] 
Juan BelmonteBeitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete and Continuous Dynamical Systems  S, 2011, 4 (5) : 10071017. doi: 10.3934/dcdss.2011.4.1007 
[8] 
David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems  S, 2011, 4 (5) : 13271340. doi: 10.3934/dcdss.2011.4.1327 
[9] 
Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 17891811. doi: 10.3934/dcds.2016.36.1789 
[10] 
Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete and Continuous Dynamical Systems  S, 2011, 4 (5) : 12991325. doi: 10.3934/dcdss.2011.4.1299 
[11] 
Amin Esfahani, Steve Levandosky. Solitary waves of the rotationgeneralized BenjaminOno equation. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 663700. doi: 10.3934/dcds.2013.33.663 
[12] 
Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete and Continuous Dynamical Systems  B, 2007, 7 (4) : 793806. doi: 10.3934/dcdsb.2007.7.793 
[13] 
Khaled El Dika. Asymptotic stability of solitary waves for the BenjaminBonaMahony equation. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 583622. doi: 10.3934/dcds.2005.13.583 
[14] 
Sevdzhan Hakkaev. Orbital stability of solitary waves of the SchrödingerBoussinesq equation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 10431050. doi: 10.3934/cpaa.2007.6.1043 
[15] 
Jerry L. Bona, Didier Pilod. Stability of solitarywave solutions to the HirotaSatsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 13911413. doi: 10.3934/dcds.2010.27.1391 
[16] 
Jibin Li, Yi Zhang. Exact solitary wave and quasiperiodic wave solutions for four fifthorder nonlinear wave equations. Discrete and Continuous Dynamical Systems  B, 2010, 13 (3) : 623631. doi: 10.3934/dcdsb.2010.13.623 
[17] 
Zengji Du, Xiaojie Lin, Yulin Ren. Dynamics of solitary waves and periodic waves for a generalized KPMEWBurgers equation with damping. Communications on Pure and Applied Analysis, 2022, 21 (6) : 19872003. doi: 10.3934/cpaa.2021118 
[18] 
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitarywave solutions of BenjaminOno and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87111. doi: 10.3934/dcds.2020215 
[19] 
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701746. doi: 10.3934/dcds.2020298 
[20] 
Jibin Li. Family of nonlinear wave equations which yield loop solutions and solitary wave solutions. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 897907. doi: 10.3934/dcds.2009.24.897 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]