July  2002, 8(3): 781-794. doi: 10.3934/dcds.2002.8.781

A degenerate evolution system modeling bean's critical-state type-II superconductors


Department of Mathematics, Washington State University, Pullman, WA 99164, United States


Department of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States


Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China

Received  May 2001 Revised  December 2001 Published  April 2002

In this paper we study a degenerate evolution system $\mathbf H_t +\nabla \times [|\nabla \times \mathbf H|^{p-2}\nabla \times \mathbf H]=\mathbf F$ in a bounded domain as well as its limit as $p\to \infty$ subject to appropriate initial and boundary conditions. This system governs the evolution of the magnetic field $\mathbf H$ in a conductive medium under the influence of a system force $\mathbf F$. The system is an approximation of Bean's critical-state model for type-II superconductors. The existence, uniqueness and regularity of solutions to the system are established. Moreover, it is shown that the limit of $\mathbf H(x, t)$ as $p\to \infty$ is a solution to the Bean model.
Citation: H. M. Yin, Ben Q. Li, Jun Zou. A degenerate evolution system modeling bean's critical-state type-II superconductors. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 781-794. doi: 10.3934/dcds.2002.8.781

Goro Akagi. Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity. Conference Publications, 2005, 2005 (Special) : 30-39. doi: 10.3934/proc.2005.2005.30


Frank Jochmann. Power-law approximation of Bean's critical-state model with displacement current. Conference Publications, 2011, 2011 (Special) : 747-753. doi: 10.3934/proc.2011.2011.747


Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545


Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025


Lars Grüne, Hasnaa Zidani. Zubov's equation for state-constrained perturbed nonlinear systems. Mathematical Control & Related Fields, 2015, 5 (1) : 55-71. doi: 10.3934/mcrf.2015.5.55


Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941


Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723


Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015


Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235


Philippe Michel, Bhargav Kumar Kakumani. GRE methods for nonlinear model of evolution equation and limited ressource environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6653-6673. doi: 10.3934/dcdsb.2019161


Takahisa Inui, Nobu Kishimoto, Kuranosuke Nishimura. Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6299-6353. doi: 10.3934/dcds.2019275


Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283


V. Styles. A note on the convergence in the limit of a long wave vortex density superconductivity model to the Bean model. Communications on Pure & Applied Analysis, 2002, 1 (4) : 485-494. doi: 10.3934/cpaa.2002.1.485


Youcef Mammeri, Damien Sellier. A surface model of nonlinear, non-steady-state phloem transport. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1055-1069. doi: 10.3934/mbe.2017055


Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020141


Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2441-2474. doi: 10.3934/cpaa.2021049


Baoxiang Wang. Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 753-763. doi: 10.3934/dcds.1999.5.753


Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577


Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100-117. doi: 10.3934/proc.1998.1998.100


Xu Xu, Xin Zhao. Exponential upper bounds on the spectral gaps and homogeneous spectrum for the non-critical extended Harper's model. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4777-4800. doi: 10.3934/dcds.2020201

2020 Impact Factor: 1.392


  • PDF downloads (108)
  • HTML views (0)
  • Cited by (25)

Other articles
by authors

[Back to Top]